文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

机器学习在样本量有限的情况下表现优于逻辑回归分类:预测儿科 HIV 死亡率和临床进展为艾滋病的模型。

Machine learning outperformed logistic regression classification even with limit sample size: A model to predict pediatric HIV mortality and clinical progression to AIDS.

机构信息

Pediatric Infectious Diseases Unit, Fundación para la Investigación Biomédica del Hospital 12 de Octubre, Madrid, Spain.

PENTA Foundation, Padova, Italy.

出版信息

PLoS One. 2022 Oct 14;17(10):e0276116. doi: 10.1371/journal.pone.0276116. eCollection 2022.


DOI:10.1371/journal.pone.0276116
PMID:36240212
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9565414/
Abstract

Logistic regression (LR) is the most common prediction model in medicine. In recent years, supervised machine learning (ML) methods have gained popularity. However, there are many concerns about ML utility for small sample sizes. In this study, we aim to compare the performance of 7 algorithms in the prediction of 1-year mortality and clinical progression to AIDS in a small cohort of infants living with HIV from South Africa and Mozambique. The data set (n = 100) was randomly split into 70% training and 30% validation set. Seven algorithms (LR, Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Naïve Bayes (NB), Artificial Neural Network (ANN), and Elastic Net) were compared. The variables included as predictors were the same across the models including sociodemographic, virologic, immunologic, and maternal status features. For each of the models, a parameter tuning was performed to select the best-performing hyperparameters using 5 times repeated 10-fold cross-validation. A confusion-matrix was built to assess their accuracy, sensitivity, and specificity. RF ranked as the best algorithm in terms of accuracy (82,8%), sensitivity (78%), and AUC (0,73). Regarding specificity and sensitivity, RF showed better performance than the other algorithms in the external validation and the highest AUC. LR showed lower performance compared with RF, SVM, or KNN. The outcome of children living with perinatally acquired HIV can be predicted with considerable accuracy using ML algorithms. Better models would benefit less specialized staff in limited resources countries to improve prompt referral in case of high-risk clinical progression.

摘要

逻辑回归(LR)是医学中最常用的预测模型。近年来,监督机器学习(ML)方法越来越受欢迎。然而,对于 ML 在小样本量下的实用性存在许多担忧。在这项研究中,我们旨在比较 7 种算法在预测南非和莫桑比克感染 HIV 的小婴儿中 1 年死亡率和向艾滋病临床进展的表现。数据集(n = 100)随机分为 70%的训练集和 30%的验证集。比较了 7 种算法(LR、随机森林(RF)、支持向量机(SVM)、K-最近邻(KNN)、朴素贝叶斯(NB)、人工神经网络(ANN)和弹性网络)。纳入的预测变量在模型中是相同的,包括社会人口统计学、病毒学、免疫学和母体状态特征。对于每个模型,都进行了参数调整,使用 5 次重复 10 折交叉验证选择表现最佳的超参数。构建混淆矩阵以评估其准确性、敏感性和特异性。RF 在准确性(82.8%)、敏感性(78%)和 AUC(0.73)方面表现最佳。关于特异性和敏感性,RF 在外部验证中的表现优于其他算法,且 AUC 最高。LR 的性能低于 RF、SVM 或 KNN。使用 ML 算法可以相当准确地预测围产期感染 HIV 的儿童的结果。更好的模型将使资源有限国家的非专业人员受益,以便在临床进展风险高的情况下及时转诊。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75aa/9565414/574d27973032/pone.0276116.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75aa/9565414/927ee7d3b9eb/pone.0276116.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75aa/9565414/3850556f1b2c/pone.0276116.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75aa/9565414/574d27973032/pone.0276116.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75aa/9565414/927ee7d3b9eb/pone.0276116.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75aa/9565414/3850556f1b2c/pone.0276116.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75aa/9565414/574d27973032/pone.0276116.g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索