MRI 影像组学特征预测儿童低级别胶质瘤 BRAF V600E 突变:一种用于分子诊断的非侵入性方法。

Radiomics features based on MRI predict BRAF V600E mutation in pediatric low-grade gliomas: A non-invasive method for molecular diagnosis.

机构信息

Department of Medical Imaging Centre, the First Affiliated Hospital, Jinan University, Guangzhou, China; Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China.

Department of Medical Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China.

出版信息

Clin Neurol Neurosurg. 2022 Nov;222:107478. doi: 10.1016/j.clineuro.2022.107478. Epub 2022 Oct 13.

Abstract

OBJECTIVE

To investigate the clinical application value of radiomics features based on preoperative magnetic resonance imaging for predicting B-Raf proto-oncogene serine/threonine-protein (BRAF) V600E mutation in pediatric low-grade gliomas.

MATERIALS AND METHODS

The clinical, imaging, and pathological data from 113 pediatric patients with low-grade gliomas patients were retrospectively analyzed. Using open-source software, three-dimensional imaging features were extracted on the basis of FLAIR sequences, and the radiomics process was analyzed to dichotomize BRAFV600E mutant and wild type. All cases were randomly divided into the training and test sets according to a 7:3 training and test group ratio, and a 5-fold cross-validation was performed on the training set. The optimal hyperparameters were selected to build the prediction model, and the test set was used for external validation to assess the diagnostic value of the model using the receiver operating characteristic curve.

RESULTS

The training set comprised 79 patients (47 males, 32 females, mean age 9.86 ± 5.20) and the test set comprised 34 patients (20 males, 14 females, mean age 10.97 ± 5.14). Sex, age, and brain side were not significant predictors of BRAF, and tumor location on the supratentorial region was a BRAF predictor (p < 0.05). The radiomics model constructed by principal component analysis for dimensionality reduction, Kruskal-Wallis for filtering of features, and random forest as a classifier performed best. In the training set, the mean area under the curve (AUC) with a five-fold cross-validation was 0.72 ( ± 0.057; 95 % confidence interval (CI), 0.602-0.831) and AUC of the test set was 0.875 ( ± 0.062; 95 % CI, 0.731-0.983).

CONCLUSION

The use of a radiomics model based on FLAIR sequences can help predict BRAF V600E mutations in pediatric low-grade gliomas.

摘要

目的

探究基于术前磁共振成像的影像组学特征在预测儿童低级别胶质瘤中 B-Raf 原癌基因丝氨酸/苏氨酸蛋白(BRAF)V600E 突变中的临床应用价值。

材料与方法

回顾性分析 113 例儿童低级别胶质瘤患者的临床、影像和病理资料。使用开源软件,基于 FLAIR 序列提取三维影像特征,并对影像组学过程进行分析,以将 BRAFV600E 突变型和野生型进行二分类。所有病例按 7:3 的训练组和测试组比例随机分为训练组和测试组,并在训练组上进行 5 折交叉验证。选择最佳超参数构建预测模型,然后用测试组对外验证模型的诊断价值,采用受试者工作特征曲线进行评估。

结果

训练组包括 79 例患者(男 47 例,女 32 例,平均年龄 9.86±5.20),测试组包括 34 例患者(男 20 例,女 14 例,平均年龄 10.97±5.14)。性别、年龄和大脑侧别不是 BRAF 的显著预测因素,而幕上肿瘤位置是 BRAF 的预测因素(p<0.05)。通过主成分分析进行降维、Kruskal-Wallis 进行特征筛选以及随机森林作为分类器构建的影像组学模型效果最佳。在训练组中,五折交叉验证的平均曲线下面积(AUC)为 0.72(±0.057;95%置信区间(CI),0.602-0.831),测试组的 AUC 为 0.875(±0.062;95%CI,0.731-0.983)。

结论

基于 FLAIR 序列的影像组学模型有助于预测儿童低级别胶质瘤中的 BRAF V600E 突变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索