Suppr超能文献

基于空间位阻效应的化学富集方法对调控蛋白液-液相分离的精氨酸二甲基化的全局分析。

Global profiling of arginine dimethylation in regulating protein phase separation by a steric effect-based chemical-enrichment method.

机构信息

Chinese Academy of Sciences Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Proc Natl Acad Sci U S A. 2022 Oct 25;119(43):e2205255119. doi: 10.1073/pnas.2205255119. Epub 2022 Oct 18.

Abstract

Protein arginine methylation plays an important role in regulating protein functions in different cellular processes, and its dysregulation may lead to a variety of human diseases. Recently, arginine methylation was found to be involved in modulating protein liquid-liquid phase separation (LLPS), which drives the formation of different membraneless organelles (MLOs). Here, we developed a steric effect-based chemical-enrichment method (SECEM) coupled with liquid chromatography-tandem mass spectrometry to analyze arginine dimethylation (DMA) at the proteome level. We revealed by SECEM that, in mammalian cells, the DMA sites occurring in the RG/RGG motifs are preferentially enriched within the proteins identified in different MLOs, especially stress granules (SGs). Notably, global decrease of protein arginine methylation severely impairs the dynamic assembly and disassembly of SGs. By further profiling the dynamic change of DMA upon SG formation by SECEM, we identified that the most dramatic change of DMA occurs at multiple sites of RG/RGG-rich regions from several key SG-contained proteins, including G3BP1, FUS, hnRNPA1, and KHDRBS1. Moreover, both in vitro arginine methylation and mutation of the identified DMA sites significantly impair LLPS capability of the four different RG/RGG-rich regions. Overall, we provide a global profiling of the dynamic changes of protein DMA in the mammalian cells under different stress conditions by SECEM and reveal the important role of DMA in regulating protein LLPS and SG dynamics.

摘要

蛋白质精氨酸甲基化在调节不同细胞过程中的蛋白质功能方面发挥着重要作用,其失调可能导致多种人类疾病。最近,发现精氨酸甲基化参与调节蛋白质液-液相分离(LLPS),从而驱动不同无膜细胞器(MLO)的形成。在这里,我们开发了一种基于空间位阻效应的化学富集方法(SECEM),并结合液相色谱-串联质谱技术来分析蛋白质组水平上的精氨酸二甲基化(DMA)。我们通过 SECEM 发现,在哺乳动物细胞中,发生在 RG/RGG 基序中的 DMA 位点优先富集在不同 MLO 中鉴定的蛋白质中,尤其是应激颗粒(SGs)。值得注意的是,蛋白质精氨酸甲基化的全局减少严重损害了 SG 的动态组装和拆卸。通过 SECEM 进一步分析 SG 形成过程中 DMA 的动态变化,我们鉴定出在包括 G3BP1、FUS、hnRNPA1 和 KHDRBS1 在内的几个关键 SG 包含蛋白的 RG/RGG 丰富区域的多个位点上,DMA 发生了最显著的变化。此外,体外精氨酸甲基化和鉴定的 DMA 位点的突变都显著损害了四个不同 RG/RGG 丰富区域的 LLPS 能力。总的来说,我们通过 SECEM 对哺乳动物细胞在不同应激条件下蛋白质 DMA 的动态变化进行了全面分析,并揭示了 DMA 在调节蛋白质 LLPS 和 SG 动力学方面的重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11f4/9618127/c011fd5cae9b/pnas.2205255119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验