Suppr超能文献

基于自适应小波的脑电信号智能想象运动检测系统

An Intelligent Motor Imagery Detection System Using Electroencephalography with Adaptive Wavelets.

机构信息

Department of Electrical & Computer Engineering, Aarhus University, 8000 Aarhus, Denmark.

Center for Quantitative Genetics and Genomics, Aarhus University, 8000 Aarhus, Denmark.

出版信息

Sensors (Basel). 2022 Oct 24;22(21):8128. doi: 10.3390/s22218128.

Abstract

Classification of motor imagery (MI) tasks provides a robust solution for specially-abled people to connect with the milieu for brain-computer interface. Precise selection of uniform tuning parameters of tunable Q wavelet transform (TQWT) for electroencephalography (EEG) signals is arduous. Therefore, this paper proposes robust TQWT for automatically selecting optimum tuning parameters to decompose non-stationary EEG signals accurately. Three evolutionary optimization algorithms are explored for automating the tuning parameters of robust TQWT. The fitness function of the mean square error of decomposition is used. This paper also exploits channel selection using a Laplacian score for dominant channel selection. Important features elicited from sub-bands of robust TQWT are classified using different kernels of the least square support vector machine classifier. The radial basis function kernel has provided the highest accuracy of 99.78%, proving that the proposed method is superior to other state-of-the-art using the same database.

摘要

运动想象 (MI) 任务的分类为特殊人群连接脑机接口环境提供了一个强大的解决方案。精确选择可调 Q 子波变换 (TQWT) 的统一调整参数对于脑电图 (EEG) 信号来说是很困难的。因此,本文提出了鲁棒的 TQWT,用于自动选择最佳调整参数来精确分解非平稳 EEG 信号。本文探索了三种进化优化算法来自动调整鲁棒 TQWT 的调整参数。使用分解均方误差的适应度函数。本文还利用拉普拉斯分数进行通道选择,以选择优势通道。使用不同的最小二乘支持向量机分类器的核从鲁棒 TQWT 的子带中提取重要特征。径向基函数核提供了 99.78%的最高精度,证明了与使用相同数据库的其他最先进的方法相比,该方法具有优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3b1/9657151/44450effbc49/sensors-22-08128-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验