Kathan Alexander, Harrer Mathias, Küster Ludwig, Triantafyllopoulos Andreas, He Xiangheng, Milling Manuel, Gerczuk Maurice, Yan Tianhao, Rajamani Srividya Tirunellai, Heber Elena, Grossmann Inga, Ebert David D, Schuller Björn W
EIHW - Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Augsburg, Germany.
Psychology & Digital Mental Health Care, Technical University of Munich, Munich, Germany.
Front Digit Health. 2022 Nov 18;4:964582. doi: 10.3389/fdgth.2022.964582. eCollection 2022.
Digital health interventions are an effective way to treat depression, but it is still largely unclear how patients' individual symptoms evolve dynamically during such treatments. Data-driven forecasts of depressive symptoms would allow to greatly improve the personalisation of treatments. In current forecasting approaches, models are often trained on an entire population, resulting in a general model that works overall, but does not translate well to each individual in clinically heterogeneous, real-world populations. Model fairness across patient subgroups is also frequently overlooked. Personalised models tailored to the individual patient may therefore be promising.
We investigate different personalisation strategies using transfer learning, subgroup models, as well as subject-dependent standardisation on a newly-collected, longitudinal dataset of depression patients undergoing treatment with a digital intervention ( patients recruited). Both passive mobile sensor data as well as ecological momentary assessments were available for modelling. We evaluated the models' ability to predict symptoms of depression (Patient Health Questionnaire-2; PHQ-2) at the end of each day, and to forecast symptoms of the next day.
In our experiments, we achieve a best mean-absolute-error (MAE) of (25% improvement) for predicting PHQ-2 values at the end of the day with subject-dependent standardisation compared to a non-personalised baseline ( ). For one day ahead-forecasting, we can improve the baseline of by to a MAE of using a transfer learning approach with shared common layers. In addition, personalisation leads to fairer models at group-level.
Our results suggest that personalisation using subject-dependent standardisation and transfer learning can improve predictions and forecasts, respectively, of depressive symptoms in participants of a digital depression intervention. We discuss technical and clinical limitations of this approach, avenues for future investigations, and how personalised machine learning architectures may be implemented to improve existing digital interventions for depression.
数字健康干预是治疗抑郁症的有效方法,但在这类治疗过程中,患者的个体症状如何动态演变仍 largely 不清楚。基于数据驱动的抑郁症状预测将有助于大幅改善治疗的个性化。在当前的预测方法中,模型通常在整个人口中进行训练,从而得到一个总体上适用的通用模型,但在临床异质性的现实世界人群中,该模型并不能很好地适用于每个个体。患者亚组之间的模型公平性也常常被忽视。因此,为个体患者量身定制的个性化模型可能很有前景。
我们在一个新收集的、接受数字干预治疗的抑郁症患者纵向数据集(招募了 名患者)上,研究了使用迁移学习、亚组模型以及个体依赖标准化的不同个性化策略。被动移动传感器数据和生态瞬时评估均可用于建模。我们评估了模型在每天结束时预测抑郁症状(患者健康问卷 -2;PHQ -2)以及预测次日症状的能力。
在我们的实验中,与非个性化基线( )相比,使用个体依赖标准化在预测当天结束时的 PHQ -2 值时,我们实现了最佳平均绝对误差(MAE)为 (提高了 25%)。对于提前一天的预测,使用具有共享公共层的迁移学习方法,我们可以将基线 提高到 MAE 为 的水平。此外,个性化在组级别上产生了更公平的模型。
我们的结果表明,使用个体依赖标准化和迁移学习进行个性化分别可以改善数字抑郁症干预参与者抑郁症状的预测和预报。我们讨论了这种方法的技术和临床局限性、未来研究的途径,以及如何实施个性化机器学习架构以改进现有的抑郁症数字干预措施。