用于个性化人类遗传学和药物基因组学研究的诱导多能干细胞衍生的芯片器官模型。
iPSC-derived organ-on-a-chip models for personalized human genetics and pharmacogenomics studies.
作者信息
Palasantzas Victoria E J M, Tamargo-Rubio Isabel, Le Kieu, Slager Jelle, Wijmenga Cisca, Jonkers Iris H, Kumar Vinod, Fu Jingyuan, Withoff Sebo
机构信息
Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
出版信息
Trends Genet. 2023 Apr;39(4):268-284. doi: 10.1016/j.tig.2023.01.002. Epub 2023 Feb 5.
Genome-wide association studies (GWAS) have now correlated hundreds of genetic variants with complex genetic diseases and drug efficacy. Functional characterization of these factors remains challenging, particularly because of the lack of human model systems. Molecular and nanotechnological advances, in particular the ability to generate patient-specific PSC lines, differentiate them into diverse cell types, and seed and combine them on microfluidic chips, have led to the establishment of organ-on-a-chip (OoC) platforms that recapitulate organ biology. OoC technology thus provides unique personalized platforms for studying the effects of host genetics and environmental factors on organ physiology. In this review we describe the technology and provide examples of how OoCs may be used for disease modeling and pharmacogenetic research.
全基因组关联研究(GWAS)现已将数百种基因变异与复杂遗传疾病及药物疗效关联起来。对这些因素进行功能表征仍具有挑战性,尤其是因为缺乏人类模型系统。分子和纳米技术的进步,特别是能够生成患者特异性多能干细胞(PSC)系、将它们分化为多种细胞类型,并将它们接种和组合在微流控芯片上,这促使了能够概括器官生物学的芯片器官(OoC)平台的建立。因此,OoC技术为研究宿主遗传学和环境因素对器官生理学的影响提供了独特的个性化平台。在这篇综述中,我们描述了该技术,并举例说明了OoC如何用于疾病建模和药物遗传学研究。