Suppr超能文献

所有的胆汁都被分为三个或更多部分:带环树状图的带标记历史的递归枚举。 (注:原文中“galls”在医学语境外可能有误用,正常语境下一般不这么表述,可能会影响准确理解。)

All galls are divided into three or more parts: recursive enumeration of labeled histories for galled trees.

作者信息

Mathur Shaili, Rosenberg Noah A

机构信息

Department of Biology, Stanford University, Stanford, 94305, CA, USA.

出版信息

Algorithms Mol Biol. 2023 Feb 13;18(1):1. doi: 10.1186/s13015-023-00224-4.

Abstract

OBJECTIVE

In mathematical phylogenetics, a labeled rooted binary tree topology can possess any of a number of labeled histories, each of which represents a possible temporal ordering of its coalescences. Labeled histories appear frequently in calculations that describe the combinatorics of phylogenetic trees. Here, we generalize the concept of labeled histories from rooted phylogenetic trees to rooted phylogenetic networks, specifically for the class of rooted phylogenetic networks known as rooted galled trees.

RESULTS

Extending a recursive algorithm for enumerating the labeled histories of a labeled tree topology, we present a method to enumerate the labeled histories associated with a labeled rooted galled tree. The method relies on a recursive decomposition by which each gall in a galled tree possesses three or more descendant subtrees. We exhaustively provide the numbers of labeled histories for all small galled trees, finding that each gall reduces the number of labeled histories relative to a specified galled tree that does not contain it.

CONCLUSION

The results expand the set of structures for which labeled histories can be enumerated, extending a well-known calculation for phylogenetic trees to a class of phylogenetic networks.

摘要

目的

在数学系统发育学中,一个有标记的有根二叉树拓扑结构可以拥有许多有标记历史中的任何一种,每种历史都代表其合并的一种可能时间顺序。有标记历史在描述系统发育树组合学的计算中经常出现。在这里,我们将有标记历史的概念从有根系统发育树推广到有根系统发育网络,特别是对于一类称为有根带结树的有根系统发育网络。

结果

扩展用于枚举有标记树拓扑结构的有标记历史的递归算法,我们提出了一种方法来枚举与有标记有根带结树相关的有标记历史。该方法依赖于一种递归分解,通过这种分解,带结树中的每个结拥有三个或更多后代子树。我们详尽地给出了所有小带结树的有标记历史数量,发现相对于不包含某个结的指定带结树,每个结都会减少有标记历史的数量。

结论

这些结果扩展了可以枚举有标记历史的结构集,将系统发育树的一个著名计算扩展到一类系统发育网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd95/9926779/5b28c87dc470/13015_2023_224_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验