Suppr超能文献

一种基于图像的技术,用于使用PlantCV自动评估根部病害严重程度。

An image-based technique for automated root disease severity assessment using PlantCV.

作者信息

Pierz Logan D, Heslinga Dilyn R, Buell C Robin, Haus Miranda J

机构信息

Department of Plant Biology Michigan State University East Lansing Michigan 48824 USA.

Plant Resilience Institute Michigan State University East Lansing Michigan 48824 USA.

出版信息

Appl Plant Sci. 2023 Jan 20;11(1):e11507. doi: 10.1002/aps3.11507. eCollection 2023 Jan-Feb.

Abstract

PREMISE

Plant disease severity assessments are used to quantify plant-pathogen interactions and identify disease-resistant lines. One common method for disease assessment involves scoring tissue manually using a semi-quantitative scale. Automating assessments would provide fast, unbiased, and quantitative measurements of root disease severity, allowing for improved consistency within and across large data sets. However, using traditional Root System Markup Language (RSML) software in the study of root responses to pathogens presents additional challenges; these include the removal of necrotic tissue during the thresholding process, which results in inaccurate image analysis.

METHODS

Using PlantCV, we developed a Python-based pipeline, herein called RootDS, with two main objectives: (1) improving disease severity phenotyping and (2) generating binary images as inputs for RSML software. We tested the pipeline in common bean inoculated with Fusarium root rot.

RESULTS

Quantitative disease scores and root area generated by this pipeline had a strong correlation with manually curated values (  = 0.92 and 0.90, respectively) and provided a broader capture of variation than manual disease scores. Compared to traditional manual thresholding, images generated using our pipeline did not affect RSML output.

DISCUSSION

Overall, the RootDS pipeline provides greater functionality in disease score data sets and provides an alternative method for generating image sets for use in available RSML software.

摘要

前提

植物病害严重程度评估用于量化植物与病原体的相互作用并鉴定抗病品系。一种常见的病害评估方法是使用半定量量表手动对组织进行评分。自动化评估将提供对根病严重程度的快速、无偏且定量的测量,从而提高大数据集内部和之间的一致性。然而,在研究根系对病原体的反应时使用传统的根系标记语言(RSML)软件会带来额外的挑战;这些挑战包括在阈值处理过程中去除坏死组织,这会导致图像分析不准确。

方法

我们使用PlantCV开发了一个基于Python的管道,在此称为RootDS,其有两个主要目标:(1)改进病害严重程度表型分析,(2)生成二进制图像作为RSML软件的输入。我们在接种了镰刀菌根腐病的普通豆中测试了该管道。

结果

该管道生成的定量病害评分和根面积与人工整理的值具有很强的相关性(分别为 = 0.92和0.90),并且比人工病害评分更广泛地捕捉了变异。与传统的手动阈值处理相比,使用我们的管道生成的图像不会影响RSML输出。

讨论

总体而言,RootDS管道在病害评分数据集中提供了更多功能,并提供了一种生成图像集的替代方法,以供现有RSML软件使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00b7/9934521/f20d32d75934/APS3-11-e11507-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验