Suppr超能文献

模型误设定误导了疾病爆发空间动态的推断。

Model misspecification misleads inference of the spatial dynamics of disease outbreaks.

机构信息

Department of Evolution and Ecology, University of California, Davis, CA 95616.

出版信息

Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2213913120. doi: 10.1073/pnas.2213913120. Epub 2023 Mar 10.

Abstract

Epidemiology has been transformed by the advent of Bayesian phylodynamic models that allow researchers to infer the geographic history of pathogen dispersal over a set of discrete geographic areas [1, 2]. These models provide powerful tools for understanding the spatial dynamics of disease outbreaks, but contain many parameters that are inferred from minimal geographic information (i.e., the single area in which each pathogen was sampled). Consequently, inferences under these models are inherently sensitive to our prior assumptions about the model parameters. Here, we demonstrate that the default priors used in empirical phylodynamic studies make strong and biologically unrealistic assumptions about the underlying geographic process. We provide empirical evidence that these unrealistic priors strongly (and adversely) impact commonly reported aspects of epidemiological studies, including: 1) the relative rates of dispersal between areas; 2) the importance of dispersal routes for the spread of pathogens among areas; 3) the number of dispersal events between areas, and; 4) the ancestral area in which a given outbreak originated. We offer strategies to avoid these problems, and develop tools to help researchers specify more biologically reasonable prior models that will realize the full potential of phylodynamic methods to elucidate pathogen biology and, ultimately, inform surveillance and monitoring policies to mitigate the impacts of disease outbreaks.

摘要

贝叶斯系统发育动力学模型的出现改变了流行病学,使研究人员能够推断病原体在一系列离散地理区域内传播的地理历史[1,2]。这些模型为理解疾病爆发的空间动态提供了强大的工具,但包含许多从最小地理信息(即每个病原体采样的单个区域)推断出的参数。因此,这些模型下的推断本质上对我们关于模型参数的先验假设敏感。在这里,我们证明经验系统发育动力学研究中使用的默认先验假设对潜在的地理过程做出了强烈且不切实际的假设。我们提供了经验证据,表明这些不切实际的先验假设强烈(并不利地)影响了通常报告的流行病学研究的各个方面,包括:1)地区间扩散的相对速率;2)传播途径对病原体在地区间传播的重要性;3)地区间扩散事件的数量;以及 4)给定爆发起源的原始地区。我们提供了避免这些问题的策略,并开发了工具来帮助研究人员指定更符合生物学的先验模型,从而充分发挥系统发育动力学方法的潜力,阐明病原体生物学,并最终为监测和监控政策提供信息,以减轻疾病爆发的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9db/10089176/26c69952242b/pnas.2213913120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验