基于残差网络、Inception 和提出的激活函数的新型图像分类方法。

A Novel Image Classification Method Based on Residual Network, Inception, and Proposed Activation Function.

机构信息

School of Computer and Information, Anqing Normal University, Anqing 246011, China.

School of Computer and Technology, University of Science and Technology of China, Hefei 230027, China.

出版信息

Sensors (Basel). 2023 Mar 9;23(6):2976. doi: 10.3390/s23062976.

Abstract

In deeper layers, ResNet heavily depends on skip connections and Relu. Although skip connections have demonstrated their usefulness in networks, a major issue arises when the dimensions between layers are not consistent. In such cases, it is necessary to use techniques such as zero-padding or projection to match the dimensions between layers. These adjustments increase the complexity of the network architecture, resulting in an increase in parameter number and a rise in computational costs. Another problem is the vanishing gradient caused by utilizing Relu. In our model, after making appropriate adjustments to the inception blocks, we replace the deeper layers of ResNet with modified inception blocks and Relu with our non-monotonic activation function (NMAF). To reduce parameter number, we use symmetric factorization and 1×1 convolutions. Utilizing these two techniques contributed to reducing the parameter number by around 6 M parameters, which has helped reduce the run time by 30 s/epoch. Unlike Relu, NMAF addresses the deactivation problem of the non-positive number by activating the negative values and outputting small negative numbers instead of zero in Relu, which helped in enhancing the convergence speed and increasing the accuracy by 5%, 15%, and 5% for the non-noisy datasets, and 5%, 6%, 21% for non-noisy datasets.

摘要

在更深的层次上,ResNet 严重依赖于跳过连接和 Relu。虽然跳过连接已经证明了它们在网络中的有用性,但当层之间的维度不一致时,就会出现一个主要问题。在这种情况下,有必要使用零填充或投影等技术来匹配层之间的维度。这些调整增加了网络架构的复杂性,导致参数数量的增加和计算成本的提高。另一个问题是使用 Relu 导致的梯度消失。在我们的模型中,对 inception 块进行适当调整后,我们用修改后的 inception 块替换 ResNet 的更深层,并用我们的非单调激活函数(NMAF)替换 Relu。为了减少参数数量,我们使用对称因子分解和 1×1 卷积。这两种技术有助于减少大约 600 万个参数的数量,这有助于将运行时间减少 30 秒/轮。与 Relu 不同,NMAF 通过激活负数值并在 Relu 中输出小的负数值而不是零来解决非正数的失活问题,这有助于提高收敛速度,在非噪声数据集上提高精度 5%、15%和 5%,在非噪声数据集上提高精度 5%、6%和 21%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d348/10056718/2ad9932c676e/sensors-23-02976-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索