硅芯片微结构的集成用于软微流控中的在线微生物细胞裂解。

Integration of silicon chip microstructures for in-line microbial cell lysis in soft microfluidics.

机构信息

Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.

Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.

出版信息

Lab Chip. 2023 May 2;23(9):2327-2340. doi: 10.1039/d2lc00896c.

Abstract

The paper presents fabrication methodologies that integrate silicon components into soft microfluidic devices to perform microbial cell lysis for biological applications. The integration methodology consists of a silicon chip that is fabricated with microstructure arrays and embedded in a microfluidic device, which is driven by piezoelectric actuation to perform cell lysis by physically breaking microbial cell walls micromechanical impaction. We present different silicon microarray geometries, their fabrication techniques, integration of said micropatterned silicon impactor chips into microfluidic devices, and device operation and testing on synthetic microbeads and two yeast species ( and ) to evaluate their efficacy. The generalized strategy developed for integration of the micropatterned silicon impactor chip into soft microfluidic devices can serve as an important process step for a new class of hybrid silicon-polymeric devices for future cellular processing applications. The proposed integration methodology can be scalable and integrated as an in-line cell lysis tool with existing microfluidics assays.

摘要

本文提出了将硅元件集成到软微流控设备中以进行微生物细胞裂解的制造方法,用于生物应用。该集成方法包括用微结构阵列制造的硅芯片,并嵌入微流控设备中,该微流控设备由压电致动驱动,通过物理打破微生物细胞壁进行细胞裂解 - 微机械冲击。我们展示了不同的硅微阵列几何形状,它们的制造技术,将所述微图案化硅冲击器芯片集成到微流控设备中,以及在合成微珠和两种酵母(和)上进行设备操作和测试,以评估它们的功效。为将微图案化硅冲击器芯片集成到软微流控设备中而开发的通用策略可以作为用于未来细胞处理应用的新型硅 - 聚合物混合设备的重要工艺步骤。所提出的集成方法可以是可扩展的,并与现有的微流控分析集成作为在线细胞裂解工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索