Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, 20133 Milan, Italy.
Cnr-Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni (CNR-IEIIT), 20133 Milan, Italy.
Sensors (Basel). 2023 Apr 24;23(9):4228. doi: 10.3390/s23094228.
The aim of this study is to characterize the performance of an inclination analysis for predicting the onset of heart failure (HF) from routinely collected clinical biomarkers extracted from primary care electronic medical records. A balanced dataset of 698 patients (with/without HF), including a minimum of five longitudinal measures of nine biomarkers (body mass index, diastolic and systolic blood pressure, fasting glucose, glycated hemoglobin, low-density and high-density lipoproteins, total cholesterol, and triglycerides) is used. The proposed algorithm achieves an accuracy of 0.89 (sensitivity of 0.89, specificity of 0.90) to predict the inclination of biomarkers (i.e., their trend towards a 'survival' or 'collapse' as defined by an inclination analysis) on a labeled, balanced dataset of 40 patients. Decision trees trained on the predicted inclination of biomarkers have significantly higher recall (0.69 vs. 0.53) and significantly higher negative predictive value (0.60 vs. 0.55) than those trained on the average values computed from the measures of biomarkers available before the onset of the disease, suggesting that an inclination analysis can help identify the onset of HF in the primary care patient population from routinely available clinical data. This exploratory study provides the basis for further investigations of inclination analyses to identify at-risk patients and generate preventive measures (i.e., personalized recommendations to reverse the trend of biomarkers towards collapse).
本研究旨在从初级保健电子病历中提取的常规临床生物标志物中,通过倾斜分析来预测心力衰竭(HF)的发生,以此来描述倾斜分析的性能。使用了一个包含 698 名患者(有/无 HF)的平衡数据集,其中至少有 9 种生物标志物(体重指数、舒张压和收缩压、空腹血糖、糖化血红蛋白、低密度和高密度脂蛋白、总胆固醇和甘油三酯)的 5 个纵向测量值。所提出的算法在一个标记的、包含 40 名患者的平衡数据集中,预测生物标志物的倾斜度(即根据倾斜分析定义的“生存”或“崩溃”趋势)的准确率为 0.89(灵敏度为 0.89,特异性为 0.90)。基于预测的生物标志物倾斜度训练的决策树的召回率(0.69 比 0.53)和阴性预测值(0.60 比 0.55)明显更高,表明倾斜分析可以帮助识别初级保健患者群体中 HF 的发生,从常规临床数据中。这项探索性研究为进一步研究倾斜分析以识别高危患者并制定预防措施(即针对生物标志物崩溃趋势的个性化建议)提供了基础。