利用临床和[F]-FDG-PET/CT影像组学特征进行机器学习分析以预测乳腺癌患者复发的应用
Application of Machine Learning Analyses Using Clinical and [F]-FDG-PET/CT Radiomic Characteristics to Predict Recurrence in Patients with Breast Cancer.
作者信息
Kawaji Kodai, Nakajo Masatoyo, Shinden Yoshiaki, Jinguji Megumi, Tani Atsushi, Hirahara Daisuke, Kitazono Ikumi, Ohtsuka Takao, Yoshiura Takashi
机构信息
Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
出版信息
Mol Imaging Biol. 2023 Oct;25(5):923-934. doi: 10.1007/s11307-023-01823-8. Epub 2023 May 16.
PURPOSE
To develop and identify machine learning (ML) models using pretreatment clinical and 2-deoxy-2-[F]fluoro-D-glucose positron emission tomography ([F]-FDG-PET)-based radiomic characteristics to predict disease recurrences in patients with breast cancers who underwent surgery.
PROCEDURES
This retrospective study included 112 patients with 118 breast cancer lesions who underwent [F]-FDG-PET/ X-ray computed tomography (CT) preoperatively, and these lesions were assigned to training (n=95) and testing (n=23) cohorts. A total of 12 clinical and 40 [F]-FDG-PET-based radiomic characteristics were used to predict recurrences using 7 different ML algorithms, namely, decision tree, random forest (RF), neural network, k-nearest neighbors, naive Bayes, logistic regression, and support vector machine (SVM) with a 10-fold cross-validation and synthetic minority over-sampling technique. Three different ML models were created using clinical characteristics (clinical ML models), radiomic characteristics (radiomic ML models), and both clinical and radiomic characteristics (combined ML models). Each ML model was constructed using the top ten characteristics ranked by the decrease in Gini impurity. The areas under ROC curves (AUCs) and accuracies were used to compare predictive performances.
RESULTS
In training cohorts, all 7 ML algorithms except for logistic regression algorithm in the radiomics ML model (AUC = 0.760) achieved AUC values of >0.80 for predicting recurrences with clinical (range, 0.892-0.999), radiomic (range, 0.809-0.984), and combined (range, 0.897-0.999) ML models. In testing cohorts, the RF algorithm of combined ML model achieved the highest AUC and accuracy (95.7% (22/23)) with similar classification performance between training and testing cohorts (AUC: training cohort, 0.999; testing cohort, 0.992). The important characteristics for modeling process of this RF algorithm were radiomic GLZLM_ZLNU and AJCC stage.
CONCLUSIONS
ML analyses using both clinical and [F]-FDG-PET-based radiomic characteristics may be useful for predicting recurrence in patients with breast cancers who underwent surgery.
目的
利用术前临床特征和基于2-脱氧-2-[F]氟代-D-葡萄糖正电子发射断层扫描([F]-FDG-PET)的放射组学特征开发并识别机器学习(ML)模型,以预测接受手术的乳腺癌患者的疾病复发情况。
程序
这项回顾性研究纳入了112例患有118个乳腺癌病灶的患者,这些患者术前接受了[F]-FDG-PET/ X射线计算机断层扫描(CT),并将这些病灶分配到训练组(n = 95)和测试组(n = 23)。总共使用12项临床特征和40项基于[F]-FDG-PET的放射组学特征,通过7种不同的ML算法(即决策树、随机森林(RF)、神经网络、k近邻、朴素贝叶斯、逻辑回归和支持向量机(SVM))并采用10倍交叉验证和合成少数类过采样技术来预测复发情况。使用临床特征(临床ML模型)、放射组学特征(放射组学ML模型)以及临床和放射组学特征(联合ML模型)创建了三种不同的ML模型。每个ML模型均使用按基尼杂质减少量排名的前十个特征构建。采用ROC曲线下面积(AUC)和准确率来比较预测性能。
结果
在训练组中,除放射组学ML模型中的逻辑回归算法(AUC = 0.760)外,所有7种ML算法在使用临床(范围为0.892 - 0.999)、放射组学(范围为0.809 - 0.984)和联合(范围为0.897 - 0.999)ML模型预测复发时的AUC值均>0.80。在测试组中,联合ML模型的RF算法实现了最高的AUC和准确率(95.7%(22/23)),训练组和测试组之间具有相似的分类性能(AUC:训练组为0.999;测试组为0.992)。该RF算法建模过程的重要特征为放射组学GLZLM_ZLNU和AJCC分期。
结论
使用临床特征和基于[F]-FDG-PET的放射组学特征进行ML分析可能有助于预测接受手术的乳腺癌患者的复发情况。