Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA.
Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, USA.
Nat Commun. 2023 May 31;14(1):3148. doi: 10.1038/s41467-023-37897-9.
A major challenge in biotechnology and biomanufacturing is the identification of a set of biomarkers for perturbations and metabolites of interest. Here, we develop a data-driven, transcriptome-wide approach to rank perturbation-inducible genes from time-series RNA sequencing data for the discovery of analyte-responsive promoters. This provides a set of biomarkers that act as a proxy for the transcriptional state referred to as cell state. We construct low-dimensional models of gene expression dynamics and rank genes by their ability to capture the perturbation-specific cell state using a novel observability analysis. Using this ranking, we extract 15 analyte-responsive promoters for the organophosphate malathion in the underutilized host organism Pseudomonas fluorescens SBW25. We develop synthetic genetic reporters from each analyte-responsive promoter and characterize their response to malathion. Furthermore, we enhance malathion reporting through the aggregation of the response of individual reporters with a synthetic consortium approach, and we exemplify the library's ability to be useful outside the lab by detecting malathion in the environment. The engineered host cell, a living malathion sensor, can be optimized for use in environmental diagnostics while the developed machine learning tool can be applied to discover perturbation-inducible gene expression systems in the compendium of host organisms.
生物技术和生物制造的一个主要挑战是确定一组感兴趣的扰动和代谢物的生物标志物。在这里,我们开发了一种数据驱动的、全转录组方法,从时间序列 RNA 测序数据中对扰动诱导基因进行排名,以发现分析物响应的启动子。这提供了一组生物标志物,作为转录状态的替代物,称为细胞状态。我们构建了基因表达动力学的低维模型,并通过使用新的可观测性分析对基因进行排名,以捕获特定于扰动的细胞状态的能力。使用这种排名,我们从未充分利用的宿主生物荧光假单胞菌 SBW25 中提取了 15 个对有机磷马拉硫磷有反应的启动子。我们从每个分析物响应启动子开发合成遗传报告器,并表征它们对马拉硫磷的响应。此外,我们通过用合成群落方法聚合单个报告器的响应来增强马拉硫磷的报告,并且通过在环境中检测马拉硫磷来说明该文库在实验室之外的有用性。工程化的宿主细胞,即活体马拉硫磷传感器,可以优化用于环境诊断,而开发的机器学习工具可以应用于发现宿主生物组合中的扰动诱导基因表达系统。