使用 3D 自配置目标检测网络的 CTA 上的 LVO 自动检测和侧支评分:一项多中心研究。
Automated LVO detection and collateral scoring on CTA using a 3D self-configuring object detection network: a multi-center study.
机构信息
Radiology Department, Sisli Hamidiye Etfal Research and Training Hospital, Istanbul, Turkey.
Radiology Department, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
出版信息
Sci Rep. 2023 May 31;13(1):8834. doi: 10.1038/s41598-023-33723-w.
The use of deep learning (DL) techniques for automated diagnosis of large vessel occlusion (LVO) and collateral scoring on computed tomography angiography (CTA) is gaining attention. In this study, a state-of-the-art self-configuring object detection network called nnDetection was used to detect LVO and assess collateralization on CTA scans using a multi-task 3D object detection approach. The model was trained on single-phase CTA scans of 2425 patients at five centers, and its performance was evaluated on an external test set of 345 patients from another center. Ground-truth labels for the presence of LVO and collateral scores were provided by three radiologists. The nnDetection model achieved a diagnostic accuracy of 98.26% (95% CI 96.25-99.36%) in identifying LVO, correctly classifying 339 out of 345 CTA scans in the external test set. The DL-based collateral scores had a kappa of 0.80, indicating good agreement with the consensus of the radiologists. These results demonstrate that the self-configuring 3D nnDetection model can accurately detect LVO on single-phase CTA scans and provide semi-quantitative collateral scores, offering a comprehensive approach for automated stroke diagnostics in patients with LVO.
深度学习(DL)技术在自动诊断大血管闭塞(LVO)和计算机断层血管造影(CTA)中的侧支评分方面引起了关注。在这项研究中,使用了一种称为 nnDetection 的最先进的自配置目标检测网络,通过多任务 3D 目标检测方法在 CTA 扫描上检测 LVO 并评估侧支化。该模型在五个中心的 2425 名患者的单相 CTA 扫描上进行了训练,并在另一个中心的 345 名患者的外部测试集上进行了评估。LVO 的存在和侧支评分的真实标签由三位放射科医生提供。nnDetection 模型在识别 LVO 方面的诊断准确性为 98.26%(95%置信区间 96.25-99.36%),正确分类了外部测试集中的 345 个 CTA 扫描中的 339 个。基于 DL 的侧支评分的 Kappa 值为 0.80,表明与放射科医生的共识具有良好的一致性。这些结果表明,自配置的 3D nnDetection 模型可以准确地在单相 CTA 扫描上检测 LVO,并提供半定量的侧支评分,为 LVO 患者的自动中风诊断提供了一种全面的方法。