Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, Zuid-Holland, 2628CD, Delft, The Netherlands.
Bronkhorst High-Tech BV, Nijverheidsstraat 1A, Ruurlo, 7261 AK, Gelderland, The Netherlands.
Biomed Microdevices. 2023 Jun 2;25(2):19. doi: 10.1007/s10544-023-00657-z.
Organ-on-a-chip (OoC) devices require the precise control of various media. This is mostly done using several fluid control components, which are much larger than the typical OoC device and connected through fluidic tubing, i.e., the fluidic system is not integrated, which inhibits the system's portability. Here, we explore the limits of fluidic system integration using off-the-shelf fluidic control components. A flow control configuration is proposed that uses a vacuum to generate a fluctuation-free flow and minimizes the number of components used in the system. 3D printing is used to fabricate a custom-designed platform box for mounting the chosen smallest footprint components. It provides flexibility in arranging the various components to create experiment-specific systems. A demonstrator system is realized for lung-on-a-chip experiments. The 3D-printed platform box is 290 mm long, 240 mm wide and 37 mm tall. After integrating all the components, it weighs 4.8 kg. The system comprises of a switch valve, flow and pressure controllers, and a vacuum pump to control the diverse media flows. The system generates liquid flow rates ranging from 1.5 [Formula: see text]Lmin[Formula: see text] to 68 [Formula: see text]Lmin[Formula: see text] in the cell chambers, and a cyclic vacuum of 280 mbar below atmospheric pressure with 0.5 Hz frequency in the side channels to induce mechanical strain on the cells-substrate. The components are modular for easy exchange. The battery operated platform box can be mounted on either upright or inverted microscopes and fits in a standard incubator. Overall, it is shown that a compact integrated and portable fluidic system for OoC experiments can be constructed using off-the-shelf components. For further down-scaling, the fluidic control components, like the pump, switch valves, and flow controllers, require significant miniaturization while having a wide flow rate range with high resolution.
器官芯片(OoC)设备需要精确控制各种介质。这主要通过使用几个流体控制组件来完成,这些组件比典型的 OoC 设备大得多,并通过流体管道连接,即流体系统没有集成,这抑制了系统的便携性。在这里,我们探索了使用现成的流体控制组件来实现流体系统集成的极限。提出了一种流量控制配置,该配置使用真空产生无波动的流量,并最大限度地减少系统中使用的组件数量。使用 3D 打印制造了一个用于安装所选最小占地面积组件的定制设计平台盒。它提供了在各种组件之间灵活布置以创建特定于实验的系统的能力。实现了用于肺芯片实验的演示系统。3D 打印平台盒长 290 毫米,宽 240 毫米,高 37 毫米。集成所有组件后,它重 4.8 公斤。该系统包括一个开关阀、流量和压力控制器以及一台真空泵,用于控制各种介质流量。该系统在细胞腔中产生的液体流量范围为 1.5 [Formula: see text]Lmin[Formula: see text]至 68 [Formula: see text]Lmin[Formula: see text],在侧通道中产生 280 mbar 的循环真空,频率为 0.5 Hz,以对细胞-基底施加机械应变。组件为模块化,易于更换。电池供电的平台盒可以安装在直立或倒置显微镜上,并适合标准培养箱。总的来说,结果表明,可以使用现成的组件构建用于 OoC 实验的紧凑、集成和便携式流体系统。为了进一步缩小尺寸,需要对泵、开关阀和流量控制器等流体控制组件进行显著的小型化,同时具有宽流量范围和高分辨率。