电化学还原 CO 中由电位相关的 Pauli 斥力诱导的反转区域。

Inverted Region in Electrochemical Reduction of CO Induced by Potential-Dependent Pauli Repulsion.

机构信息

Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.

出版信息

J Am Chem Soc. 2023 Jul 5;145(26):14267-14275. doi: 10.1021/jacs.3c02447. Epub 2023 Jun 9.

Abstract

Electrochemical CO reduction reaction (eCORR) is of great significance to energy and environmental engineering, while fundamental questions remain regarding its mechanisms. Herein, we formulate a fundamental understanding of the interplay between the applied potential () and kinetics of CO activation in eCORR on Cu surfaces. We find that the nature of the CO activation mechanism in eCORR varies with , and it is the sequential electron-proton transfer (SEPT) mechanism dominant at the working but switched to the concerted proton-electron transfer (CPET) mechanism at highly negative . We then identify that the barrier of the electron-transfer step in the SEPT mechanism exhibits an inverted region as decreases, which originates from the rapidly rising Pauli repulsion in the physisorption of CO with decreasing . We further demonstrate catalyst designs that effectively suppress the adverse effect of Pauli repulsion. This fundamental understanding may be general for the electrochemical reduction reactions of closed-shell molecules.

摘要

电化学 CO 还原反应(eCORR)对能源和环境工程具有重要意义,但关于其机制仍存在基本问题。在此,我们制定了在 Cu 表面上施加电势()与 CO 活化动力学之间相互作用的基本理解。我们发现,eCORR 中 CO 活化机制的性质随而变化,在工作时主要是顺序电子-质子转移(SEPT)机制,但在高度负时切换到协同质子-电子转移(CPET)机制。然后,我们确定 SEPT 机制中电子转移步骤的势垒随着的减小呈现出倒转区域,这源于 CO 在物理吸附中由于减小而导致的 Pauli 斥力的迅速上升。我们进一步展示了有效抑制 Pauli 斥力不利影响的催化剂设计。这种基本理解可能对闭壳分子的电化学还原反应具有普遍性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索