TiCT@rGO@MoS 的梯度分层空心异质结构用于高效微波吸收。
Gradient Hierarchical Hollow Heterostructures of TiCT@rGO@MoS for Efficient Microwave Absorption.
机构信息
Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
出版信息
ACS Appl Mater Interfaces. 2023 Jul 12;15(27):32803-32813. doi: 10.1021/acsami.3c06860. Epub 2023 Jun 27.
Heterostructure engineering has emerged as a promising approach for creating high-performance microwave absorption materials in various applications such as advanced communications, portable devices, and military fields. However, achieving strong electromagnetic wave attenuation, good impedance matching, and low density in a single heterostructure remains a significant challenge. Herein, a unique structural design strategy that employs a hollow structure coupled with gradient hierarchical heterostructures to achieve high-performance microwave absorption is proposed. MoS nanosheets are uniformly grown onto the double-layered TiCT MXene@rGO hollow microspheres through self-assembly and sacrificial template techniques. Notably, the gradient hierarchical heterostructures, comprising a MoS impedance matching layer, a reduced graphene oxide (rGO) lossy layer, and a TiCT MXene reflective layer, have demonstrated significant improvements in impedance matching and attenuation capabilities. Additionally, the incorporation of a hollow structure can further improve microwave absorption while reducing the overall composite density. The distinctive gradient hollow heterostructures enable TiCT@rGO@MoS hollow microspheres with exceptional microwave absorption properties. The reflection loss value reaches as strong as -54.2 dB at a thin thickness of 1.8 mm, and the effective absorption bandwidth covers the whole Ku-band, up to 6.04 GHz. This work provides an exquisite perspective on heterostructure engineering design for developing next-generation microwave absorbers.
异质结构工程已成为在各种应用中创造高性能微波吸收材料的一种很有前途的方法,例如先进的通信、便携式设备和军事领域。然而,在单个异质结构中实现强的电磁波衰减、良好的阻抗匹配和低密度仍然是一个重大挑战。在此,提出了一种独特的结构设计策略,该策略采用空心结构与梯度分层异质结构相结合,以实现高性能的微波吸收。通过自组装和牺牲模板技术,将 MoS 纳米片均匀地生长到双层 TiCT MXene@rGO 空心微球上。值得注意的是,由 MoS 阻抗匹配层、还原氧化石墨烯(rGO)损耗层和 TiCT MXene 反射层组成的梯度分层异质结构,在阻抗匹配和衰减能力方面都有显著提高。此外,空心结构的引入可以进一步提高微波吸收,同时降低整体复合材料密度。独特的梯度空心异质结构使 TiCT@rGO@MoS 空心微球具有优异的微波吸收性能。在 1.8 毫米的薄厚度下,反射损耗值达到了-54.2dB 之强,有效吸收带宽覆盖整个 Ku 波段,高达 6.04GHz。这项工作为开发下一代微波吸收体的异质结构工程设计提供了一个极好的视角。