温带生态系统十年碳通量的驱动因素

Drivers of Decadal Carbon Fluxes Across Temperate Ecosystems.

作者信息

Desai Ankur R, Murphy Bailey A, Wiesner Susanne, Thom Jonathan, Butterworth Brian J, Koupaei-Abyazani Nikaan, Muttaqin Andi, Paleri Sreenath, Talib Ammara, Turner Jess, Mineau James, Merrelli Aronne, Stoy Paul, Davis Ken

机构信息

Department of Atmospheric and Oceanic Sciences University of Wisconsin-Madison Madison WI USA.

Department of Plant and Earth Science University of Wisconsin-River Falls River Falls WI USA.

出版信息

J Geophys Res Biogeosci. 2022 Dec;127(12):e2022JG007014. doi: 10.1029/2022JG007014. Epub 2022 Dec 7.

Abstract

Long-running eddy covariance flux towers provide insights into how the terrestrial carbon cycle operates over multiple timescales. Here, we evaluated variation in net ecosystem exchange (NEE) of carbon dioxide (CO) across the Chequamegon Ecosystem-Atmosphere Study AmeriFlux core site cluster in the upper Great Lakes region of the USA from 1997 to 2020. The tower network included two mature hardwood forests with differing management regimes (US-WCr and US-Syv), two fen wetlands with varying levels of canopy sheltering and vegetation (US-Los and US-ALQ), and a very tall (400 m) landscape-level tower (US-PFa). Together, they provided over 70 site-years of observations. The 19-tower Chequamegon Heterogenous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 campaign centered around US-PFa provided additional information on the spatial variation of NEE. Decadal variability was present in all long-term sites, but cross-site coherence in interannual NEE in the earlier part of the record became weaker with time as non-climatic factors such as local disturbances likely dominated flux time series. Average decadal NEE at the tall tower transitioned from carbon source to sink to near neutral over 24 years. Respiration had a greater effect than photosynthesis on driving variations in NEE at all sites. Declining snowfall offset potential increases in assimilation from warmer springs, as less-insulated soils delayed start of spring green-up. Higher CO increased maximum net assimilation parameters but not total gross primary productivity. Stand-scale sites were larger net sinks than the landscape tower. Clustered, long-term carbon flux observations provide value for understanding the diverse links between carbon and climate and the challenges of upscaling these responses across space.

摘要

长期运行的涡度相关通量塔有助于深入了解陆地碳循环在多个时间尺度上的运作方式。在此,我们评估了1997年至2020年期间美国大湖地区北部奇科梅戈生态系统-大气研究AmeriFlux核心站点集群中二氧化碳(CO₂)的净生态系统交换(NEE)变化。该塔网络包括两个管理方式不同的成熟阔叶林(美国-WCr和美国-Syv)、两个冠层遮蔽和植被程度不同的沼泽湿地(美国-Los和美国-ALQ)以及一座非常高(400米)的景观级高塔(美国-PFa)。它们共同提供了超过70个站点年的观测数据。2019年围绕美国-PFa开展的由高密度广泛探测器阵列实现的19座塔的奇科梅戈异质生态系统能量平衡研究提供了关于NEE空间变化的更多信息。所有长期站点都存在年代际变化,但随着时间推移,记录早期年际NEE的站点间一致性变弱,因为诸如局部干扰等非气候因素可能主导了通量时间序列。高塔处的平均年代际NEE在24年里从碳源转变为碳汇再到接近中性。在所有站点,呼吸作用对驱动NEE变化的影响大于光合作用。降雪量减少抵消了春季变暖可能带来的同化增加,因为保温性较差的土壤推迟了春季返青的开始。较高的CO₂增加了最大净同化参数,但没有增加总初级生产力。林分尺度的站点比景观塔是更大的净碳汇。长期的集群碳通量观测对于理解碳与气候之间的多样联系以及在空间上扩大这些响应面临的挑战具有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c84/10369927/fa305093ec24/JGRG-127-e2022JG007014-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索