FUS在线粒体DNA修复中的作用及靶向连接酶-1表达可挽救FUS相关神经退行性变中的修复缺陷。
FUS Unveiled in Mitochondrial DNA Repair and Targeted Ligase-1 Expression Rescues Repair-Defects in FUS-Linked Neurodegeneration.
作者信息
Kodavati Manohar, Wang Haibo, Guo Wenting, Mitra Joy, Hegde Pavana M, Provasek Vincent, Maloji Rao Vikas H, Vedula Indira, Zhang Aijun, Mitra Sankar, Tomkinson Alan E, Hamilton Dale J, Bosch Ludo Van Den, Hegde Muralidhar L
机构信息
Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA.
KU Leuven-Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, 3000, Belgium.
出版信息
Res Sq. 2023 Jul 12:rs.3.rs-3152718. doi: 10.21203/rs.3.rs-3152718/v1.
This study establishes the physiological role of Fused in Sarcoma (FUS) in mitochondrial DNA (mtDNA) repair and highlights its implications to the pathogenesis of FUS-associated neurodegenerative diseases such as Amyotrophic lateral sclerosis (ALS). Endogenous FUS interacts with and recruits mtDNA Ligase IIIα (mtLig3) to DNA damage sites within mitochondria, a relationship essential for maintaining mtDNA repair and integrity in healthy cells. Using ALS patient-derived FUS mutant cell lines, a transgenic mouse model, and human autopsy samples, we discovered that compromised FUS functionality hinders mtLig3's repair role, resulting in increased mtDNA damage and mutations. These alterations cause various manifestations of mitochondrial dysfunction, particularly under stress conditions relevant to disease pathology. Importantly, rectifying FUS mutations in patient-derived induced pluripotent cells (iPSCs) preserves mtDNA integrity. Similarly, targeted introduction of human DNA Ligase 1 restores repair mechanisms and mitochondrial activity in FUS mutant cells, suggesting a potential therapeutic approach. Our findings unveil FUS's critical role in mitochondrial health and mtDNA repair, offering valuable insights into the mechanisms underlying mitochondrial dysfunction in FUS-associated neurodegeneration.
本研究确定了肉瘤融合蛋白(FUS)在线粒体DNA(mtDNA)修复中的生理作用,并强调了其对FUS相关神经退行性疾病(如肌萎缩侧索硬化症,ALS)发病机制的影响。内源性FUS与线粒体DNA连接酶IIIα(mtLig3)相互作用,并将其招募到线粒体内的DNA损伤位点,这种关系对于维持健康细胞中的mtDNA修复和完整性至关重要。利用ALS患者来源的FUS突变细胞系、转基因小鼠模型和人体尸检样本,我们发现FUS功能受损会阻碍mtLig3的修复作用,导致mtDNA损伤和突变增加。这些改变会引起线粒体功能障碍的各种表现,尤其是在与疾病病理相关的应激条件下。重要的是,纠正患者来源的诱导多能干细胞(iPSC)中的FUS突变可保持mtDNA的完整性。同样,靶向引入人类DNA连接酶1可恢复FUS突变细胞中的修复机制和线粒体活性,提示了一种潜在的治疗方法。我们的研究结果揭示了FUS在线粒体健康和mtDNA修复中的关键作用,为FUS相关神经退行性变中线粒体功能障碍的潜在机制提供了有价值的见解。