Suppr超能文献

基于结构的 N-CAIR 突变酶抑制剂的发现。

Structure-Guided Discovery of N-CAIR Mutase Inhibitors.

机构信息

Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, United States.

The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States.

出版信息

Biochemistry. 2023 Sep 5;62(17):2587-2596. doi: 10.1021/acs.biochem.2c00705. Epub 2023 Aug 8.

Abstract

Because purine nucleotides are essential for all life, differences between how microbes and humans metabolize purines can be exploited for the development of antimicrobial therapies. While humans biosynthesize purine nucleotides in a 10-step pathway, most microbes utilize an additional 11th enzymatic activity. The human enzyme, aminoimidazole ribonucleotide (AIR) carboxylase generates the product 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) directly. Most microbes, however, require two separate enzymes, a synthetase (PurK) and a mutase (PurE), and proceed through the intermediate, N-CAIR. Toward the development of therapeutics that target these differences, we have solved crystal structures of the N-CAIR mutase of the human pathogens (LpPurE) and (BcPurE) and used a structure-guided approach to identify inhibitors. Analysis of the structures reveals a highly conserved fold and active site architecture. Using this data, and three additional structures of PurE enzymes, we screened a library of FDA-approved compounds and identified a set of 25 candidates for further analysis. Among these, we identified several new PurE inhibitors with micromolar IC values. Several of these compounds, including the α-blocker Alfuzosin, inhibit the microbial PurE enzymes much more effectively than the human homologue. These structures and the newly described PurE inhibitors are valuable tools to aid in further studies of this enzyme and provide a foundation for the development of compounds that target differences between human and microbial purine metabolism.

摘要

由于嘌呤核苷酸对所有生命都是必需的,因此微生物和人类代谢嘌呤的方式的差异可以被利用来开发抗菌治疗方法。虽然人类在一个 10 步途径中生物合成嘌呤核苷酸,但大多数微生物利用额外的第 11 种酶活性。人类酶,氨基咪唑核糖核苷酸(AIR)羧化酶直接产生产物 4-羧基-5-氨基咪唑核糖核苷酸(CAIR)。然而,大多数微生物需要两种单独的酶,一个合成酶(PurK)和一个突变酶(PurE),并通过中间体 N-CAIR 进行。为了开发针对这些差异的治疗方法,我们已经解决了人类病原体(LpPurE)和(BcPurE)的 N-CAIR 突变酶的晶体结构,并使用结构导向方法来识别抑制剂。结构分析揭示了高度保守的折叠和活性位点结构。利用这些数据和另外三个 PurE 酶的结构,我们筛选了一个 FDA 批准的化合物库,并确定了一组 25 个候选化合物进行进一步分析。在这些化合物中,我们鉴定了几种新的 PurE 抑制剂,其 IC 值为微摩尔。这些化合物中的几种,包括α受体阻滞剂阿夫唑嗪,比人类同源物更有效地抑制微生物 PurE 酶。这些结构和新描述的 PurE 抑制剂是有价值的工具,可以帮助进一步研究该酶,并为开发针对人类和微生物嘌呤代谢差异的化合物提供基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eb2/10484210/acf044599f02/bi2c00705_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验