文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于抗癌药物递送治疗的天然高分子纳米生物复合材料:最新进展

Natural Polymeric Nanobiocomposites for Anti-Cancer Drug Delivery Therapeutics: A Recent Update.

作者信息

Mondal Arijit, Nayak Amit Kumar, Chakraborty Prithviraj, Banerjee Sabyasachi, Nandy Bankim Chandra

机构信息

Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India.

Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751 003, India.

出版信息

Pharmaceutics. 2023 Jul 31;15(8):2064. doi: 10.3390/pharmaceutics15082064.


DOI:10.3390/pharmaceutics15082064
PMID:37631276
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10459560/
Abstract

Cancer is one of the most common lethal diseases and the leading cause of mortality worldwide. Effective cancer treatment is a global problem, and subsequent advancements in nanomedicine are useful as substitute management for anti-cancer agents. Nanotechnology, which is gaining popularity, enables fast-expanding delivery methods in science for curing diseases in a site-specific approach, utilizing natural bioactive substances because several studies have established that natural plant-based bioactive compounds can improve the effectiveness of chemotherapy. Bioactive, in combination with nanotechnology, is an exceptionally alluring and recent development in the fight against cancer. Along with their nutritional advantages, natural bioactive chemicals may be used as chemotherapeutic medications to manage cancer. Alginate, starch, xanthan gum, pectin, guar gum, hyaluronic acid, gelatin, albumin, collagen, cellulose, chitosan, and other biopolymers have been employed successfully in the delivery of medicinal products to particular sites. Due to their biodegradability, natural polymeric nanobiocomposites have garnered much interest in developing novel anti-cancer drug delivery methods. There are several techniques to create biopolymer-based nanoparticle systems. However, these systems must be created in an affordable and environmentally sustainable way to be more readily available, selective, and less hazardous to increase treatment effectiveness. Thus, an extensive comprehension of the various facets and recent developments in natural polymeric nanobiocomposites utilized to deliver anti-cancer drugs is imperative. The present article provides an overview of the latest research and developments in natural polymeric nanobiocomposites, particularly emphasizing their applications in the controlled and targeted delivery of anti-cancer drugs.

摘要

癌症是最常见的致命疾病之一,也是全球主要的死亡原因。有效的癌症治疗是一个全球性问题,而纳米医学的后续进展可用作抗癌药物的替代管理方法。日益流行的纳米技术能够以位点特异性方法在科学领域实现快速扩展的给药方式,利用天然生物活性物质,因为多项研究已证实,天然植物来源的生物活性化合物可提高化疗效果。生物活性与纳米技术相结合,是抗癌斗争中一项格外诱人的最新进展。除了其营养优势外,天然生物活性化学物质可用作化疗药物来治疗癌症。藻酸盐、淀粉、黄原胶、果胶、瓜尔胶、透明质酸、明胶、白蛋白、胶原蛋白、纤维素、壳聚糖和其他生物聚合物已成功用于将药物输送到特定部位。由于其可生物降解性,天然聚合物纳米生物复合材料在开发新型抗癌药物递送方法方面引起了广泛关注。有几种技术可用于创建基于生物聚合物的纳米颗粒系统。然而,这些系统必须以经济且环境可持续的方式创建,以便更易于获得、更具选择性且危害更小,从而提高治疗效果。因此,深入了解用于递送抗癌药物的天然聚合物纳米生物复合材料的各个方面和最新进展至关重要。本文概述了天然聚合物纳米生物复合材料的最新研究和进展,特别强调了它们在抗癌药物的控释和靶向递送中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/0dd2b3c8da9a/pharmaceutics-15-02064-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/fc3595fc5d72/pharmaceutics-15-02064-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/7f9c62ec724b/pharmaceutics-15-02064-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/c67af7ab19c3/pharmaceutics-15-02064-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/effb147c5313/pharmaceutics-15-02064-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/a2cc91e6959a/pharmaceutics-15-02064-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/f70848282274/pharmaceutics-15-02064-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/70eb80f5fb47/pharmaceutics-15-02064-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/49921738e390/pharmaceutics-15-02064-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/9669863fe1aa/pharmaceutics-15-02064-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/1034caa0c10f/pharmaceutics-15-02064-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/aacbe2c45f5c/pharmaceutics-15-02064-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/759645e1f046/pharmaceutics-15-02064-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/8a727357af7a/pharmaceutics-15-02064-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/2efff0527986/pharmaceutics-15-02064-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/1e37bcacc514/pharmaceutics-15-02064-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/2dad06bf6a19/pharmaceutics-15-02064-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/0dd2b3c8da9a/pharmaceutics-15-02064-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/fc3595fc5d72/pharmaceutics-15-02064-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/7f9c62ec724b/pharmaceutics-15-02064-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/c67af7ab19c3/pharmaceutics-15-02064-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/effb147c5313/pharmaceutics-15-02064-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/a2cc91e6959a/pharmaceutics-15-02064-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/f70848282274/pharmaceutics-15-02064-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/70eb80f5fb47/pharmaceutics-15-02064-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/49921738e390/pharmaceutics-15-02064-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/9669863fe1aa/pharmaceutics-15-02064-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/1034caa0c10f/pharmaceutics-15-02064-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/aacbe2c45f5c/pharmaceutics-15-02064-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/759645e1f046/pharmaceutics-15-02064-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/8a727357af7a/pharmaceutics-15-02064-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/2efff0527986/pharmaceutics-15-02064-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/1e37bcacc514/pharmaceutics-15-02064-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/2dad06bf6a19/pharmaceutics-15-02064-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/10459560/0dd2b3c8da9a/pharmaceutics-15-02064-g017.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索