Suppr超能文献

相似文献

1
Primary and Secondary Coordination Sphere Effects on the Structure and Function of -Nitrosylating Azurin.
J Am Chem Soc. 2023 Sep 20;145(37):20610-20623. doi: 10.1021/jacs.3c07399. Epub 2023 Sep 11.
2
Reversible S-nitrosylation in an engineered azurin.
Nat Chem. 2016 Jul;8(7):670-7. doi: 10.1038/nchem.2489. Epub 2016 Apr 25.
5
Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
Acc Chem Res. 2019 Apr 16;52(4):935-944. doi: 10.1021/acs.accounts.9b00011. Epub 2019 Mar 26.
6
Density functional study of EPR parameters and spin-density distribution of azurin and other blue copper proteins.
J Phys Chem B. 2007 Jul 19;111(28):8290-304. doi: 10.1021/jp071745v. Epub 2007 Jun 26.
7
Copper-sulfenate complex from oxidation of a cavity mutant of Pseudomonas aeruginosa azurin.
Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):924-9. doi: 10.1073/pnas.1316483111. Epub 2014 Jan 3.
8
Normal coordinate analysis of the copper center of azurin and the assignment of its resonance Raman spectrum.
Proc Natl Acad Sci U S A. 1982 Oct;79(20):6396-400. doi: 10.1073/pnas.79.20.6396.
9
De novo design and characterization of copper metallopeptides inspired by native cupredoxins.
Inorg Chem. 2015 Oct 5;54(19):9470-82. doi: 10.1021/acs.inorgchem.5b01330. Epub 2015 Sep 18.

引用本文的文献

2
Mapping the Exit Route of Hydrogen Peroxide From the Manganese Superoxide Dismutase (MnSOD) Active Site.
bioRxiv. 2025 Jul 19:2025.07.17.665311. doi: 10.1101/2025.07.17.665311.
4
Revisiting Oxygen Transport Features of Hemocyanin with NEVPT2 Level QM/MM Calculations.
J Chem Theory Comput. 2025 Feb 25;21(4):2108-2117. doi: 10.1021/acs.jctc.4c01668. Epub 2025 Feb 6.
5
Structure-driven development of a biomimetic rare earth artificial metalloprotein.
Proc Natl Acad Sci U S A. 2024 Aug 13;121(33):e2405836121. doi: 10.1073/pnas.2405836121. Epub 2024 Aug 8.

本文引用的文献

3
Design of a Flexible, Zn-Selective Protein Scaffold that Displays Anti-Irving-Williams Behavior.
J Am Chem Soc. 2022 Oct 5;144(39):18090-18100. doi: 10.1021/jacs.2c08050. Epub 2022 Sep 26.
4
Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere.
Chem Rev. 2022 Jul 27;122(14):11974-12045. doi: 10.1021/acs.chemrev.2c00106. Epub 2022 Jul 11.
5
De novo metalloprotein design.
Nat Rev Chem. 2022 Jan;6(1):31-50. doi: 10.1038/s41570-021-00339-5. Epub 2021 Dec 6.
6
Artificial Metalloproteins: At the Interface between Biology and Chemistry.
JACS Au. 2022 Jun 2;2(6):1252-1265. doi: 10.1021/jacsau.2c00102. eCollection 2022 Jun 27.
7
Catalysis and Electron Transfer in Designed Metalloproteins.
Chem Rev. 2022 Jul 27;122(14):12046-12109. doi: 10.1021/acs.chemrev.1c01025. Epub 2022 Jun 28.
8
Converged Structural and Spectroscopic Properties for Refined QM/MM Models of Azurin.
Inorg Chem. 2021 May 17;60(10):7399-7412. doi: 10.1021/acs.inorgchem.1c00640. Epub 2021 May 3.
9
The Relationship Between Protein S-Nitrosylation and Human Diseases: A Review.
Neurochem Res. 2020 Dec;45(12):2815-2827. doi: 10.1007/s11064-020-03136-6. Epub 2020 Sep 27.
10
Strategies for the expression and characterization of artificial myoglobin-based carbene transferases.
Methods Enzymol. 2020;644:35-61. doi: 10.1016/bs.mie.2020.07.007. Epub 2020 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验