Suppr超能文献

计算分析胃癌组学数据以鉴定潜在生物标志物。

Computational Analysis of Gastric Canceromics Data to Identify Putative Biomarkers.

机构信息

MIT School of Bioengineering Sciences & Research, MIT Art Design and Technology University, Raj Baugh Campus, Loni Kalbhor, Pune, 412201, Maharashtra, India.

出版信息

Curr Top Med Chem. 2024;24(2):128-156. doi: 10.2174/0115680266259310230924190213.

Abstract

BACKGROUND

Gastric cancer develops as a malignant tumor in the mucosa of the stomach, and spreads through further layers. Early-stage diagnosis of gastric cancer is highly challenging because the patients either exhibit symptoms similar to stomach infections or show no signs at all. Biomarkers are active players in the cancer process by acting as indications of aberrant alterations due to malignancy.

OBJECTIVE

Though there have been significant advancements in the biomarkers and therapeutic targets, there are still insufficient data to fully eradicate the disease in its early phases. Therefore, it is crucial to identify particular biomarkers for detecting and treating stomach cancer. This review aims to provide a thorough overview of data analysis in gastric cancer.

METHODS

Text mining, network analysis, machine learning (ML), deep learning (DL), and structural bioinformatics approaches have been employed in this study.

RESULTS

We have built a huge interaction network in the current study to forecast new biomarkers for gastric cancer. The four putatively unique and potential biomarker genes have been identified via a large association network in this study.

CONCLUSION

The molecular basis of the illness is well understood by computational approaches, which also provide biomarkers for targeted cancer therapy. These putative biomarkers may be useful in the early detection of disease. This study also shows that in H. pylori infection in early-stage gastric cancer, the top 10 hub genes constitute an essential component of the epithelial cell signaling pathways. These genes can further contribute to the future development of effective biomarkers.

摘要

背景

胃癌是一种在胃黏膜中发展的恶性肿瘤,并通过进一步的层扩散。早期胃癌的诊断极具挑战性,因为患者的症状要么类似于胃部感染,要么根本没有任何迹象。生物标志物通过作为由于恶性肿瘤而导致的异常改变的指示物,在癌症过程中起着积极的作用。

目的

尽管在生物标志物和治疗靶点方面已经取得了重大进展,但仍缺乏充分的数据来在早期阶段完全根除疾病。因此,识别特定的生物标志物来检测和治疗胃癌至关重要。本综述旨在提供胃癌数据分析的全面概述。

方法

本研究采用了文本挖掘、网络分析、机器学习 (ML)、深度学习 (DL) 和结构生物信息学方法。

结果

我们在目前的研究中构建了一个巨大的相互作用网络,以预测胃癌的新生物标志物。通过本研究中的一个大型关联网络,我们鉴定了四个推测独特且有潜力的生物标志物基因。

结论

计算方法很好地理解了疾病的分子基础,并为靶向癌症治疗提供了生物标志物。这些假定的生物标志物可能有助于早期发现疾病。本研究还表明,在早期胃癌的 H. pylori 感染中,前 10 个枢纽基因构成了上皮细胞信号通路的重要组成部分。这些基因可以进一步为有效生物标志物的未来发展做出贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验