多区域脑模型中活动状态的高密度探测。

High-Density Exploration of Activity States in a Multi-Area Brain Model.

机构信息

Paris-Saclay University, CNRS, Paris-Saclay Institute of Neuroscience (NeuroPSI), 91400, Saclay, France.

Starlab Barcelona SL, Neuroscience BU, Av Tibidabo 47 bis, Barcelona, Spain.

出版信息

Neuroinformatics. 2024 Jan;22(1):75-87. doi: 10.1007/s12021-023-09647-1. Epub 2023 Nov 20.

Abstract

To simulate whole brain dynamics with only a few equations, biophysical, mesoscopic models of local neuron populations can be connected using empirical tractography data. The development of mesoscopic mean-field models of neural populations, in particular, the Adaptive Exponential (AdEx mean-field model), has successfully summarized neuron-scale phenomena leading to the emergence of global brain dynamics associated with conscious (asynchronous and rapid dynamics) and unconscious (synchronized slow-waves, with Up-and-Down state dynamics) brain states, based on biophysical mechanisms operating at cellular scales (e.g. neuromodulatory regulation of spike-frequency adaptation during sleep-wake cycles or anesthetics). Using the Virtual Brain (TVB) environment to connect mean-field AdEx models, we have previously simulated the general properties of brain states, playing on spike-frequency adaptation, but have not yet performed detailed analyses of other parameters possibly also regulating transitions in brain-scale dynamics between different brain states. We performed a dense grid parameter exploration of the TVB-AdEx model, making use of High Performance Computing. We report a remarkable robustness of the effect of adaptation to induce synchronized slow-wave activity. Moreover, the occurrence of slow waves is often paralleled with a closer relation between functional and structural connectivity. We find that hyperpolarization can also generate unconscious-like synchronized Up and Down states, which may be a mechanism underlying the action of anesthetics. We conclude that the TVB-AdEx model reveals large-scale properties identified experimentally in sleep and anesthesia.

摘要

为了仅用几个方程来模拟整个大脑的动力学,可使用经验示踪数据将局部神经元群体的生物物理、介观模型连接起来。介观平均场模型(特别是自适应指数(AdEx 平均场模型))的发展成功地总结了神经元尺度上的现象,这些现象导致了与意识(异步和快速动力学)和无意识(同步慢波,具有上下状态动力学)相关的全局大脑动力学的出现,这些现象基于在细胞尺度上起作用的生物物理机制(例如,在睡眠-觉醒周期或麻醉期间,神经调制对尖峰频率适应的调节)。使用虚拟大脑(TVB)环境连接平均场 AdEx 模型,我们之前已经模拟了大脑状态的一般特性,在尖峰频率适应方面进行了发挥,但尚未对其他可能也调节不同大脑状态之间大脑尺度动力学转变的参数进行详细分析。我们使用高性能计算对 TVB-AdEx 模型进行了密集网格参数探索。我们报告了适应引起同步慢波活动的效果的显著稳健性。此外,慢波的发生通常与功能和结构连接之间更密切的关系平行。我们发现去极化也可以产生无意识的同步上下状态,这可能是麻醉作用的一种机制。我们得出结论,TVB-AdEx 模型揭示了在睡眠和麻醉中实验确定的大规模特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d21c/10917847/f9ef23fa09a8/12021_2023_9647_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索