Suppr超能文献

超越有创活检:利用 VASARI MRI 特征预测胶质瘤的分级和分子参数。

Beyond invasive biopsies: using VASARI MRI features to predict grade and molecular parameters in gliomas.

机构信息

Department of Radiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Jl. Farmako, Kabupaten Sleman, Daerah Istimewa Yogyakarta, 55281, Indonesia.

Department of Electrical and Information Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No.2, Kabupaten Sleman, Daerah Istimewa Yogyakarta, 55281, Indonesia.

出版信息

Cancer Imaging. 2024 Jan 2;24(1):3. doi: 10.1186/s40644-023-00638-8.

Abstract

BACKGROUND

Gliomas present a significant economic burden and patient management challenge. The 2021 WHO classification incorporates molecular parameters, which guide treatment decisions. However, acquiring these molecular data involves invasive biopsies, prompting a need for non-invasive diagnostic methods. This study aims to assess the potential of Visually AcceSAble Rembrandt Images (VASARI) MRI features to predict glioma characteristics such as grade, IDH mutation, and MGMT methylation status.

METHODS

This study enrolled 107 glioma patients treated between 2017 and 2022, meeting specific criteria including the absence of prior chemotherapy/radiation therapy, and the presence of molecular and MRI data. Images were assessed using the 27 VASARI MRI features by two blinded radiologists. Pathological and molecular assessments were conducted according to WHO 2021 CNS Tumor classification. Cross-validation Least Absolute Shrinkage and Selection Operator (CV-LASSO) logistic regression was applied for statistical analysis to identify significant VASARI features in determining glioma grade, IDH mutation, and MGMT methylation status.

RESULTS

The study demonstrated substantial observer agreement in VASARI feature evaluation (inter- and intra-observer κ = 0.714 - 0.831 and 0.910, respectively). Patient imaging characteristics varied significantly with glioma grade, IDH mutation, and MGMT methylation. A predictive model was established using VASARI features for glioma grade prediction, exhibiting an AUC of 0.995 (95% CI = 0.986 - 0.998), 100% sensitivity, and 92.86% specificity. IDH mutation status was predicted with AUC 0.930 (95% CI = 0.882 - 0.977), and improved slightly to 0.933 with 'age-at-diagnosis' added. A model predicting MGMT methylation had a satisfactory performance (AUC 0.757, 95% CI = 0.645 - 0.868), improving to 0.791 when 'age-at-diagnosis' was added.

CONCLUSIONS

The T1/FLAIR ratio, enhancement quality, hemorrhage, and proportion enhancing predict glioma grade with excellent accuracy. The proportion enhancing, thickness of enhancing margin, and T1/FLAIR ratio are significant predictors for IDH mutation status. Lastly, MGMT methylation is related to the longest diameter of the lesion, edema crossing the midline, and the proportion of the non-enhancing lesion. VASARI MRI features offer non-invasive and accurate predictive models for glioma grade, IDH mutation, and MGMT methylation status, enhancing glioma patient management.

摘要

背景

脑胶质瘤带来了巨大的经济负担和患者管理挑战。2021 年世界卫生组织(WHO)分类纳入了分子参数,这些参数指导着治疗决策。然而,获取这些分子数据需要进行有创活检,这促使我们需要寻找非侵入性的诊断方法。本研究旨在评估 Visually AcceSAble Rembrandt Images (VASARI) MRI 特征在预测脑胶质瘤特征(如分级、IDH 突变和 MGMT 甲基化状态)方面的潜力。

方法

本研究纳入了 2017 年至 2022 年间接受治疗的 107 名脑胶质瘤患者,这些患者符合特定标准,包括无化疗/放疗史,以及具有分子和 MRI 数据。两名盲法放射科医生使用 27 项 VASARI MRI 特征对图像进行评估。根据 2021 年 WHO 中枢神经系统肿瘤分类进行病理和分子评估。交叉验证最小绝对收缩和选择算子(CV-LASSO)逻辑回归用于统计分析,以确定 VASARI 特征在确定脑胶质瘤分级、IDH 突变和 MGMT 甲基化状态方面的显著特征。

结果

研究表明,VASARI 特征评估具有很好的观察者间一致性(观察者间和观察者内 κ 值分别为 0.714-0.831 和 0.910)。患者的影像学特征与脑胶质瘤分级、IDH 突变和 MGMT 甲基化状态显著相关。使用 VASARI 特征建立了脑胶质瘤分级预测模型,其 AUC 为 0.995(95%CI=0.986-0.998),敏感性为 100%,特异性为 92.86%。IDH 突变状态的预测 AUC 为 0.930(95%CI=0.882-0.977),加入“发病时年龄”后略有提高至 0.933。预测 MGMT 甲基化的模型表现良好(AUC 为 0.757,95%CI=0.645-0.868),加入“发病时年龄”后提高至 0.791。

结论

T1/FLAIR 比值、增强质量、出血和强化比例可以准确预测脑胶质瘤分级。强化比例、强化边缘厚度和 T1/FLAIR 比值是 IDH 突变状态的重要预测因子。最后,MGMT 甲基化与病变最长径、中线水肿和非强化病变比例有关。VASARI MRI 特征为脑胶质瘤分级、IDH 突变和 MGMT 甲基化状态提供了非侵入性和准确的预测模型,增强了脑胶质瘤患者的管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0811/10759759/75237d1daa8c/40644_2023_638_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验