Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
School of Information Science and Technology, Shanghai Tech University, Shanghai, China.
Nat Comput Sci. 2023 Oct;3(10):860-872. doi: 10.1038/s43588-023-00529-9. Epub 2023 Oct 19.
Structure-based lead optimization is an open challenge in drug discovery, which is still largely driven by hypotheses and depends on the experience of medicinal chemists. Here we propose a pairwise binding comparison network (PBCNet) based on a physics-informed graph attention mechanism, specifically tailored for ranking the relative binding affinity among congeneric ligands. Benchmarking on two held-out sets (provided by Schrödinger and Merck) containing over 460 ligands and 16 targets, PBCNet demonstrated substantial advantages in terms of both prediction accuracy and computational efficiency. Equipped with a fine-tuning operation, the performance of PBCNet reaches that of Schrödinger's FEP+, which is much more computationally intensive and requires substantial expert intervention. A further simulation-based experiment showed that active learning-optimized PBCNet may accelerate lead optimization campaigns by 473%. Finally, for the convenience of users, a web service for PBCNet is established to facilitate complex relative binding affinity prediction through an easy-to-operate graphical interface.
基于结构的药物先导优化是药物发现中的一个开放性挑战,它在很大程度上仍然由假设驱动,并依赖于药物化学家的经验。在这里,我们提出了一种基于物理信息图注意机制的成对结合比较网络(PBCNet),专门用于对同类配体的相对结合亲和力进行排序。在两个独立的数据集(由 Schrödinger 和 Merck 提供)上进行基准测试,其中包含超过 460 个配体和 16 个靶标,PBCNet 在预测准确性和计算效率方面都具有显著优势。经过微调操作,PBCNet 的性能达到了 Schrödinger 的 FEP+的水平,后者的计算强度要大得多,并且需要大量的专家干预。进一步的模拟实验表明,主动学习优化的 PBCNet 可以将先导优化的时间缩短 473%。最后,为了方便用户,我们建立了一个 PBCNet 的网络服务,通过一个易于操作的图形界面来方便地进行复杂的相对结合亲和力预测。