Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
Department of Urology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.
Environ Toxicol. 2024 May;39(5):2528-2544. doi: 10.1002/tox.24123. Epub 2024 Jan 8.
The therapeutic outcomes for bladder cancer (BLCA) remain suboptimal. Concurrently, there is a growing appreciation for the role of neoantigens in tumors. In this study, we explored the mechanisms underlying the involvement of neoantigen-associated genes in BLCA and their impact on prognosis. Our analysis incorporated both single-cell sequencing and bulk sequencing data sourced from publicly available databases. By employing a comprehensive set of 10 machine learning algorithms, we generated 101 algorithm combinations. The optimal combination, determined based on consistency indices, was utilized to construct a prognostic model comprising nine genes (CAPG, ACTA2, PDIA6, AKNA, PTMS, SNAP23, ID2, CD3G, SP140). Subsequently, we validated this model in an independent cohort, demonstrating its robust testing efficacy. Moreover, we explored the correlations between various clinical traits, model scores, and genes. Leveraging extensive public data resources, we conducted a drug sensitivity analysis to provide insights for targeted drug screening. Additionally, consensus clustering analysis and immune infiltration analysis were performed on bulk sequencing datasets and immunotherapy cohorts. These analyses yield valuable insights into the role of neoantigens in BLCA, guiding future research endeavors.
膀胱癌 (BLCA) 的治疗效果仍然不尽如人意。同时,人们越来越认识到肿瘤中新抗原的作用。在这项研究中,我们探讨了新抗原相关基因参与 BLCA 的机制及其对预后的影响。我们的分析结合了来自公共数据库的单细胞测序和批量测序数据。通过使用一套全面的 10 种机器学习算法,我们生成了 101 种算法组合。基于一致性指数确定的最佳组合用于构建一个包含 9 个基因 (CAPG、ACTA2、PDIA6、AKNA、PTMS、SNAP23、ID2、CD3G、SP140) 的预后模型。随后,我们在一个独立的队列中验证了该模型,证明了其强大的测试效果。此外,我们还探索了各种临床特征、模型评分和基因之间的相关性。利用广泛的公共数据资源,我们进行了药物敏感性分析,为靶向药物筛选提供了见解。此外,我们还对批量测序数据集和免疫治疗队列进行了共识聚类分析和免疫浸润分析。这些分析为 BLCA 中新抗原的作用提供了有价值的见解,指导未来的研究工作。