胃癌眼部转移的预测模型:基于机器学习的开发和解释研究。

Prediction Model of Ocular Metastases in Gastric Adenocarcinoma: Machine Learning-Based Development and Interpretation Study.

机构信息

Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, Jiangxi, People's Republic of China.

Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China.

出版信息

Technol Cancer Res Treat. 2024 Jan-Dec;23:15330338231219352. doi: 10.1177/15330338231219352.

Abstract

Although gastric adenocarcinoma (GA) related ocular metastasis (OM) is rare, its occurrence indicates a more severe disease. We aimed to utilize machine learning (ML) to analyze the risk factors of GA-related OM and predict its risks. This is a retrospective cohort study. The clinical data of 3532 GA patients were collected and randomly classified into training and validation sets in a ratio of 7:3. Those with or without OM were classified into OM and non-OM (NOM) groups. Univariate and multivariate logistic regression analyses and least absolute shrinkage and selection operator were conducted. We integrated the variables identified through feature importance ranking and further refined the selection process using forward sequential feature selection based on random forest (RF) algorithm before incorporating them into the ML model. We applied six ML algorithms to construct the predictive GA model. The area under the receiver operating characteristic (ROC) curve indicated the model's predictive ability. Also, we established a network risk calculator based on the best performance model. We used Shapley additive interpretation (SHAP) to identify risk factors and to confirm the interpretability of the black box model. We have de-identified all patient details. The ML model, consisting of 13 variables, achieved an optimal predictive performance using the gradient boosting machine (GBM) model, with an impressive area under the curve (AUC) of 0.997 in the test set. Utilizing the SHAP method, we identified crucial factors for OM in GA patients, including LDL, CA724, CEA, AFP, CA125, Hb, CA153, and Ca. Additionally, we validated the model's reliability through an analysis of two patient cases and developed a functional online web prediction calculator based on the GBM model. We used the ML method to establish a risk prediction model for GA-related OM and showed that GBM performed best among the six ML models. The model may identify patients with GA-related OM to provide early and timely treatment.

摘要

尽管胃腺癌(GA)相关的眼部转移(OM)很少见,但它的发生表明疾病更为严重。我们旨在利用机器学习(ML)分析 GA 相关 OM 的危险因素并预测其风险。这是一项回顾性队列研究。收集了 3532 例 GA 患者的临床资料,并按 7:3 的比例随机分为训练集和验证集。将有或没有 OM 的患者分为 OM 和非 OM(NOM)组。进行单因素和多因素逻辑回归分析和最小绝对收缩和选择算子。我们通过特征重要性排名进行变量选择,然后使用基于随机森林(RF)算法的正向序贯特征选择进一步细化选择过程,然后将其纳入 ML 模型。我们应用了六种 ML 算法来构建预测 GA 模型。接收者操作特征(ROC)曲线下的面积表示模型的预测能力。此外,我们还基于最佳性能模型建立了一个网络风险计算器。我们使用 Shapley 可加解释(SHAP)来识别风险因素,并确认黑盒模型的可解释性。我们已经对所有患者的详细信息进行了去识别。该 ML 模型由 13 个变量组成,在梯度提升机(GBM)模型中取得了最佳预测性能,在测试集中的曲线下面积(AUC)高达 0.997。利用 SHAP 方法,我们确定了 GA 患者 OM 的关键因素,包括 LDL、CA724、CEA、AFP、CA125、Hb、CA153 和 Ca。此外,我们通过对两个患者病例的分析验证了模型的可靠性,并基于 GBM 模型开发了一个在线功能预测计算器。我们使用 ML 方法建立了 GA 相关 OM 的风险预测模型,结果表明 GBM 在六种 ML 模型中表现最佳。该模型可以识别出 GA 相关 OM 的患者,以便提供早期和及时的治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf08/10865948/2a5ceabc93c2/10.1177_15330338231219352-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索