Department of Bioengineering, Imperial College London, London, UK.
Nat Commun. 2024 Jan 23;15(1):687. doi: 10.1038/s41467-024-44871-6.
To successfully learn real-life behavioral tasks, animals must pair actions or decisions to the task's complex structure, which can depend on abstract combinations of sensory stimuli and internal logic. The hippocampus is known to develop representations of this complex structure, forming a so-called "cognitive map". However, the precise biophysical mechanisms driving the emergence of task-relevant maps at the population level remain unclear. We propose a model in which plateau-based learning at the single cell level, combined with reinforcement learning in an agent, leads to latent representational structures codependently evolving with behavior in a task-specific manner. In agreement with recent experimental data, we show that the model successfully develops latent structures essential for task-solving (cue-dependent "splitters") while excluding irrelevant ones. Finally, our model makes testable predictions concerning the co-dependent interactions between split representations and split behavioral policy during their evolution.
为了成功学习现实生活中的行为任务,动物必须将动作或决策与任务的复杂结构联系起来,而这种复杂结构可能依赖于感官刺激和内部逻辑的抽象组合。已知海马体能够对这种复杂结构进行表示,形成所谓的“认知地图”。然而,在群体水平上驱动与任务相关的地图出现的确切生物物理机制仍不清楚。我们提出了一个模型,该模型认为在单细胞水平上的基于平台的学习,与主体中的强化学习相结合,导致潜在的代表性结构以特定于任务的方式与行为共同演变。与最近的实验数据一致,我们表明,该模型成功地开发了对解决任务至关重要的潜在结构(依赖于提示的“分裂器”),同时排除了不相关的结构。最后,我们的模型对分裂表示和分裂行为策略在其进化过程中的相互依存的交互作用做出了可测试的预测。