文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

海马体网络模型中的潜在表示与任务结构的行为探索共同演变。

Latent representations in hippocampal network model co-evolve with behavioral exploration of task structure.

机构信息

Department of Bioengineering, Imperial College London, London, UK.

出版信息

Nat Commun. 2024 Jan 23;15(1):687. doi: 10.1038/s41467-024-44871-6.


DOI:10.1038/s41467-024-44871-6
PMID:38263408
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10806076/
Abstract

To successfully learn real-life behavioral tasks, animals must pair actions or decisions to the task's complex structure, which can depend on abstract combinations of sensory stimuli and internal logic. The hippocampus is known to develop representations of this complex structure, forming a so-called "cognitive map". However, the precise biophysical mechanisms driving the emergence of task-relevant maps at the population level remain unclear. We propose a model in which plateau-based learning at the single cell level, combined with reinforcement learning in an agent, leads to latent representational structures codependently evolving with behavior in a task-specific manner. In agreement with recent experimental data, we show that the model successfully develops latent structures essential for task-solving (cue-dependent "splitters") while excluding irrelevant ones. Finally, our model makes testable predictions concerning the co-dependent interactions between split representations and split behavioral policy during their evolution.

摘要

为了成功学习现实生活中的行为任务,动物必须将动作或决策与任务的复杂结构联系起来,而这种复杂结构可能依赖于感官刺激和内部逻辑的抽象组合。已知海马体能够对这种复杂结构进行表示,形成所谓的“认知地图”。然而,在群体水平上驱动与任务相关的地图出现的确切生物物理机制仍不清楚。我们提出了一个模型,该模型认为在单细胞水平上的基于平台的学习,与主体中的强化学习相结合,导致潜在的代表性结构以特定于任务的方式与行为共同演变。与最近的实验数据一致,我们表明,该模型成功地开发了对解决任务至关重要的潜在结构(依赖于提示的“分裂器”),同时排除了不相关的结构。最后,我们的模型对分裂表示和分裂行为策略在其进化过程中的相互依存的交互作用做出了可测试的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c790/10806076/b7441350309f/41467_2024_44871_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c790/10806076/c5da7edd000b/41467_2024_44871_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c790/10806076/35f2f347219a/41467_2024_44871_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c790/10806076/8a6be0cde3fc/41467_2024_44871_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c790/10806076/a9afc13b86f2/41467_2024_44871_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c790/10806076/b7441350309f/41467_2024_44871_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c790/10806076/c5da7edd000b/41467_2024_44871_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c790/10806076/35f2f347219a/41467_2024_44871_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c790/10806076/8a6be0cde3fc/41467_2024_44871_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c790/10806076/a9afc13b86f2/41467_2024_44871_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c790/10806076/b7441350309f/41467_2024_44871_Fig5_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索