基于深度学习和像素的方法在自动定量评估包皮组织中 HIV 靶细胞的比较。

Comparison between a deep-learning and a pixel-based approach for the automated quantification of HIV target cells in foreskin tissue.

机构信息

Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.

Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.

出版信息

Sci Rep. 2024 Jan 23;14(1):1985. doi: 10.1038/s41598-024-52613-3.

Abstract

The availability of target cells expressing the HIV receptors CD4 and CCR5 in genital tissue is a critical determinant of HIV susceptibility during sexual transmission. Quantification of immune cells in genital tissue is therefore an important outcome for studies on HIV susceptibility and prevention. Immunofluorescence microscopy allows for precise visualization of immune cells in mucosal tissues; however, this technique is limited in clinical studies by the lack of an accurate, unbiased, high-throughput image analysis method. Current pixel-based thresholding methods for cell counting struggle in tissue regions with high cell density and autofluorescence, both of which are common features in genital tissue. We describe a deep-learning approach using the publicly available StarDist method to count cells in immunofluorescence microscopy images of foreskin stained for nuclei, CD3, CD4, and CCR5. The accuracy of the model was comparable to manual counting (gold standard) and surpassed the capability of a previously described pixel-based cell counting method. We show that the performance of our deep-learning model is robust in tissue regions with high cell density and high autofluorescence. Moreover, we show that this deep-learning analysis method is both easy to implement and to adapt for the identification of other cell types in genital mucosal tissue.

摘要

在生殖器组织中表达 HIV 受体 CD4 和 CCR5 的靶细胞的存在是性传播期间 HIV 易感性的关键决定因素。因此,生殖器组织中免疫细胞的定量是研究 HIV 易感性和预防的重要结果。免疫荧光显微镜可精确观察粘膜组织中的免疫细胞;然而,由于缺乏准确、无偏、高通量的图像分析方法,该技术在临床研究中受到限制。目前用于细胞计数的基于像素的阈值方法在细胞密度高和自发荧光的组织区域中存在困难,而这两者都是生殖器组织中的常见特征。我们描述了一种使用公开的 StarDist 方法的深度学习方法,用于对核、CD3、CD4 和 CCR5 染色的包皮免疫荧光显微镜图像进行细胞计数。该模型的准确性可与手动计数(金标准)相媲美,并且超过了先前描述的基于像素的细胞计数方法的能力。我们表明,我们的深度学习模型在细胞密度高和自发荧光高的组织区域中的性能稳健。此外,我们表明,这种深度学习分析方法易于实施和适应识别生殖器粘膜组织中的其他细胞类型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2659/10806185/08441aa74f58/41598_2024_52613_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索