肝细胞腺瘤与肝细胞癌的表观扩散系数磁共振成像纹理分析比较
Comparing Texture Analysis of Apparent Diffusion Coefficient MRI in Hepatocellular Adenoma and Hepatocellular Carcinoma.
作者信息
Abdullah Ayoob Dinar, Amanpour-Gharaei Behzad, Nassiri Toosi Mohssen, Delazar Sina, Saligheh Rad Hamidraza, Arian Arvin
机构信息
Technology of Radiology and Radiotherapy, Tehran University of Medical Sciences, Tehran, IRN.
Cancer Biology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, IRN.
出版信息
Cureus. 2024 Jan 1;16(1):e51443. doi: 10.7759/cureus.51443. eCollection 2024 Jan.
AIM
This study aimed to assess the effectiveness of using MRI-apparent diffusion coefficient (ADC) map-driven radiomics to differentiate between hepatocellular adenoma (HCA) and hepatocellular carcinoma (HCC) features.
MATERIALS AND METHODS
The study involved 55 patients with liver tumors (20 with HCA and 35 with HCC), featuring 106 lesions equally distributed between hepatic carcinoma and hepatic adenoma who underwent texture analysis on ADC map MR images. The analysis identified several imaging features that significantly differed between the HCA and HCC groups. Four classification models were compared for distinguishing HCA from HCC including linear support vector machine (linear-SVM), radial basis function SVM (RBF-SVM), random forest (RF), and k-nearest neighbor (KNN).
RESULTS
The k-nearest neighbor (KNN) classifier displayed the top accuracy (0.89) and specificity (0.90). Linear-SVM and KNN classifiers showcased the leading sensitivity (0.88) for both, with the KNN classifier achieving the highest precision (0.9). In comparison, the conventional interpretation had lower sensitivity (70.1%) and specificity (77.9%).
CONCLUSION
The study found that utilizing ADC maps for texture analysis in MR images is a viable method to differentiate HCA from HCC, yielding promising results in identified texture features.
目的
本研究旨在评估使用磁共振成像表观扩散系数(ADC)图驱动的放射组学来区分肝细胞腺瘤(HCA)和肝细胞癌(HCC)特征的有效性。
材料与方法
该研究纳入了55例肝肿瘤患者(20例HCA和35例HCC),其106个病灶在肝癌和肝腺瘤之间平均分布,这些患者均接受了ADC图磁共振图像的纹理分析。分析确定了HCA组和HCC组之间存在显著差异的几个影像学特征。比较了四种区分HCA和HCC的分类模型,包括线性支持向量机(linear-SVM)、径向基函数支持向量机(RBF-SVM)、随机森林(RF)和k近邻(KNN)。
结果
k近邻(KNN)分类器表现出最高的准确率(0.89)和特异性(0.90)。线性支持向量机和KNN分类器的敏感性均最高(0.88),其中KNN分类器的精度最高(0.9)。相比之下,传统解读的敏感性(70.1%)和特异性(77.9%)较低。
结论
该研究发现,利用磁共振图像中的ADC图进行纹理分析是区分HCA和HCC的一种可行方法,在确定的纹理特征方面取得了有前景的结果。