层次聚类分析应用于慢性疼痛绘图可识别未确诊的纤维肌痛:对繁忙临床实践的影响。

Hierarchical Clustering Applied to Chronic Pain Drawings Identifies Undiagnosed Fibromyalgia: Implications for Busy Clinical Practice.

机构信息

Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.

Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania.

出版信息

J Pain. 2024 Jul;25(7):104489. doi: 10.1016/j.jpain.2024.02.003. Epub 2024 Feb 12.

Abstract

Currently-used assessments for fibromyalgia require clinicians to suspect a fibromyalgia diagnosis, a process susceptible to unintentional bias. Automated assessments of standard patient-reported outcomes (PROs) could be used to prompt formal assessments, potentially reducing bias. We sought to determine whether hierarchical clustering of patient-reported pain distribution on digital body map drawings predicted fibromyalgia diagnosis. Using an observational cohort from the University of Pittsburgh's Patient Outcomes Repository for Treatment registry, which contains PROs and electronic medical record data from 21,423 patients (March 17, 2016-June 25, 2019) presenting to pain management clinics, we tested the hypothesis that hierarchical clustering subgroup was associated with fibromyalgia diagnosis, as determined by ICD-10 code. Logistic regression revealed a significant relationship between the body map cluster subgroup and fibromyalgia diagnosis. The cluster subgroup with the most body areas selected was the most likely to receive a diagnosis of fibromyalgia when controlling for age, gender, anxiety, and depression. Despite this, more than two-thirds of patients in this cluster lacked a clinical fibromyalgia diagnosis. In an exploratory analysis to better understand this apparent underdiagnosis, we developed and applied proxies of fibromyalgia diagnostic criteria. We found that proxy diagnoses were more common than ICD-10 diagnoses, which may be due to less frequent clinical fibromyalgia diagnosis in men. Overall, we find evidence of fibromyalgia underdiagnosis, likely due to gender bias. Coupling PROs that take seconds to complete, such as a digital pain body map, with machine learning is a promising strategy to reduce bias in fibromyalgia diagnosis and improve patient outcomes. PERSPECTIVE: This investigation applies hierarchical clustering to patient-reported, digital pain body maps, finding an association between body map responses and clinical fibromyalgia diagnosis. Rapid, computer-assisted interpretation of pain body maps would be clinically useful in prompting more detailed assessments for fibromyalgia, potentially reducing gender bias.

摘要

目前用于纤维肌痛的评估需要临床医生怀疑纤维肌痛的诊断,这一过程容易受到无意识偏见的影响。对标准患者报告结局(PROs)的自动评估可用于提示正式评估,从而潜在地减少偏见。我们旨在确定患者数字身体图绘画中报告的疼痛分布的层次聚类是否可以预测纤维肌痛的诊断。使用匹兹堡大学患者结果治疗登记处的观察队列,该队列包含来自 21423 名疼痛管理诊所就诊患者的 PROs 和电子病历数据(2016 年 3 月 17 日至 2019 年 6 月 25 日),我们检验了这样的假设,即层次聚类亚组与纤维肌痛诊断相关,通过 ICD-10 代码确定。逻辑回归显示身体图聚类亚组与纤维肌痛诊断之间存在显著关系。在控制年龄、性别、焦虑和抑郁的情况下,选择最多身体区域的聚类亚组最有可能被诊断为纤维肌痛。尽管如此,该聚类亚组中仍有超过三分之二的患者缺乏临床纤维肌痛诊断。在一项旨在更好地理解这种明显的诊断不足的探索性分析中,我们开发并应用了纤维肌痛诊断标准的代理。我们发现代理诊断比 ICD-10 诊断更常见,这可能是由于男性中临床纤维肌痛诊断的频率较低。总的来说,我们发现纤维肌痛诊断不足的证据,这可能是由于性别偏见。将 PROs 与机器学习相结合,PROs 只需几秒钟即可完成,例如数字疼痛身体图,这是一种减少纤维肌痛诊断偏差和改善患者结局的有前途的策略。观点:本研究将层次聚类应用于患者报告的数字疼痛身体图,发现身体图反应与临床纤维肌痛诊断之间存在关联。快速、计算机辅助的疼痛身体图解释在提示更详细的纤维肌痛评估方面具有临床意义,这可能会减少性别偏见。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索