包被在猪去细胞脂肪基质水凝胶中的巨噬细胞的功能及其与白念珠菌的相互作用。
Functionality of macrophages encapsulated in porcine decellularized adipose matrix hydrogels and interaction with Candida albicans.
机构信息
Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain.
出版信息
Biomater Adv. 2024 May;159:213794. doi: 10.1016/j.bioadv.2024.213794. Epub 2024 Feb 13.
Extracellular matrix hydrogels are considered one of the most suitable biomaterials for tissue regeneration due to their similarity with the extracellular microenvironment of the native tissue. Their properties are dependent on their composition, material concentration, fiber density and the fabrication approaches, among other factors. The encapsulation of immune cells in this kind of hydrogels, both in absence or presence of a pathogen, represents a promising strategy for the development of platforms that mimic healthy and infected tissues, respectively. In this work, we have encapsulated macrophages in 3D hydrogels of porcine decellularized adipose matrices (pDAMs) without and with the Candida albicans fungus, as 3D experimental models to study the macrophage immunocompetence in a closer situation to the physiological conditions and to mimic an infection scenario. Our results indicate that encapsulated macrophages preserve their functionality within these pDAM hydrogels and phagocytose live pathogens. In addition, their behavior is influenced by the hydrogel pore size, inversely related to the hydrogel concentration. Thus, larger pore size promotes the polarization of macrophages towards M2 phenotype along the time and enhances their phagocytosis capability. It is important to point out that encapsulated macrophages in absence of pathogen showed an M2 phenotype, but macrophages coencapsulated with C. albicans can switch towards an M1 inflammatory phenotype to resolve the infection, depending on the fungus quantity. The present study reveals that pDAM hydrogels preserve the macrophage plasticity, demonstrating their relevance as new models for macrophage-pathogen interaction studies that mimic an infection scenario with application in regenerative medicine research.
细胞外基质水凝胶因其与天然组织的细胞外微环境相似而被认为是最适合组织再生的生物材料之一。其性能取决于其组成、材料浓度、纤维密度和制造方法等因素。将免疫细胞包封在这种水凝胶中,无论是在没有病原体的情况下还是存在病原体的情况下,都是开发分别模拟健康组织和感染组织的平台的一种很有前途的策略。在这项工作中,我们将巨噬细胞包封在猪去细胞脂肪基质(pDAM)的 3D 水凝胶中,无论是否存在白色念珠菌真菌,作为 3D 实验模型,以更接近生理条件的方式研究巨噬细胞的免疫能力,并模拟感染情况。我们的结果表明,包封的巨噬细胞在这些 pDAM 水凝胶中保持其功能,并吞噬活病原体。此外,它们的行为受到水凝胶孔径的影响,与水凝胶浓度成反比。因此,较大的孔径促进巨噬细胞沿着时间向 M2 表型极化,并增强其吞噬能力。值得指出的是,在没有病原体的情况下包封的巨噬细胞表现出 M2 表型,但与白色念珠菌共包封的巨噬细胞可以根据真菌数量向 M1 炎症表型转变以解决感染。本研究表明,pDAM 水凝胶保留了巨噬细胞的可塑性,证明了它们作为模拟感染情况的巨噬细胞-病原体相互作用研究的新模型的相关性,可应用于再生医学研究。