非对称寡聚状态和序列模式可以调节多相凝聚态的混溶性。
Asymmetric oligomerization state and sequence patterning can tune multiphase condensate miscibility.
机构信息
Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA.
出版信息
Nat Chem. 2024 Jul;16(7):1073-1082. doi: 10.1038/s41557-024-01456-6. Epub 2024 Feb 21.
Endogenous biomolecular condensates, composed of a multitude of proteins and RNAs, can organize into multiphasic structures with compositionally distinct phases. This multiphasic organization is generally understood to be critical for facilitating their proper biological function. However, the biophysical principles driving multiphase formation are not completely understood. Here we use in vivo condensate reconstitution experiments and coarse-grained molecular simulations to investigate how oligomerization and sequence interactions modulate multiphase organization in biomolecular condensates. We demonstrate that increasing the oligomerization state of an intrinsically disordered protein results in enhanced immiscibility and multiphase formation. Interestingly, we find that oligomerization tunes the miscibility of intrinsically disordered proteins in an asymmetric manner, with the effect being more pronounced when the intrinsically disordered protein, exhibiting stronger homotypic interactions, is oligomerized. Our findings suggest that oligomerization is a flexible biophysical mechanism that cells can exploit to tune the internal organization of biomolecular condensates and their associated biological functions.
内源性生物分子凝聚体由多种蛋白质和 RNA 组成,可以组织成分相异的多相结构。这种多相组织通常被认为对于促进其适当的生物学功能至关重要。然而,驱动多相形成的生物物理原理尚不完全清楚。在这里,我们使用体内凝聚体重建实验和粗粒分子模拟来研究寡聚化和序列相互作用如何调节生物分子凝聚体中的多相组织。我们证明,增加无序蛋白的寡聚化状态会导致增强的不混溶性和多相形成。有趣的是,我们发现寡聚化以不对称的方式调节无序蛋白的混溶性,当表现出更强的同型相互作用的无序蛋白寡聚化时,这种效应更为明显。我们的研究结果表明,寡聚化是一种灵活的生物物理机制,细胞可以利用它来调节生物分子凝聚体的内部组织及其相关的生物学功能。