文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

A New Method of Artificial-Intelligence-Based Automatic Identification of Lymphovascular Invasion in Urothelial Carcinomas.

作者信息

Ceachi Bogdan, Cioplea Mirela, Mustatea Petronel, Gerald Dcruz Julian, Zurac Sabina, Cauni Victor, Popp Cristiana, Mogodici Cristian, Sticlaru Liana, Cioroianu Alexandra, Busca Mihai, Stefan Oana, Tudor Irina, Dumitru Carmen, Vilaia Alexandra, Oprisan Alexandra, Bastian Alexandra, Nichita Luciana

机构信息

Department of Pathology, Colentina University Hospital, 21 Stefan Cel Mare Str., Sector 2, 020125 Bucharest, Romania.

Zaya Artificial Intelligence, 9A Stefan Cel Mare Str., Voluntari, 077190 Ilfov, Romania.

出版信息

Diagnostics (Basel). 2024 Feb 16;14(4):432. doi: 10.3390/diagnostics14040432.


DOI:10.3390/diagnostics14040432
PMID:38396472
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10888137/
Abstract

The presence of lymphovascular invasion (LVI) in urothelial carcinoma (UC) is a poor prognostic finding. This is difficult to identify on routine hematoxylin-eosin (H&E)-stained slides, but considering the costs and time required for examination, immunohistochemical stains for the endothelium are not the recommended diagnostic protocol. We developed an AI-based automated method for LVI identification on H&E-stained slides. We selected two separate groups of UC patients with transurethral resection specimens. Group A had 105 patients (100 with UC; 5 with cystitis); group B had 55 patients (all with high-grade UC; D2-40 and CD34 immunohistochemical stains performed on each block). All the group A slides and 52 H&E cases from group B showing LVI using immunohistochemistry were scanned using an Aperio GT450 automatic scanner. We performed a pixel-per-pixel semantic segmentation of selected areas, and we trained InternImage to identify several classes. The DiceCoefficient and Intersection-over-Union scores for LVI detection using our method were 0.77 and 0.52, respectively. The pathologists' H&E-based evaluation in group B revealed 89.65% specificity, 42.30% sensitivity, 67.27% accuracy, and an F1 score of 0.55, which is much lower than the algorithm's DCC of 0.77. Our model outlines LVI on H&E-stained-slides more effectively than human examiners; thus, it proves a valuable tool for pathologists.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff67/10888137/aa0e9bbf03af/diagnostics-14-00432-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff67/10888137/636d900fb3f6/diagnostics-14-00432-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff67/10888137/42bf8e6efd17/diagnostics-14-00432-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff67/10888137/3f5b4daad9e5/diagnostics-14-00432-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff67/10888137/4d38997c6c9f/diagnostics-14-00432-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff67/10888137/61d8d25cf9d6/diagnostics-14-00432-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff67/10888137/aa0e9bbf03af/diagnostics-14-00432-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff67/10888137/636d900fb3f6/diagnostics-14-00432-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff67/10888137/42bf8e6efd17/diagnostics-14-00432-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff67/10888137/3f5b4daad9e5/diagnostics-14-00432-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff67/10888137/4d38997c6c9f/diagnostics-14-00432-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff67/10888137/61d8d25cf9d6/diagnostics-14-00432-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff67/10888137/aa0e9bbf03af/diagnostics-14-00432-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索