Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.
Department of Mathematics, Dartmouth College, Hanover, NH, United States.
Front Immunol. 2024 Feb 15;15:1323319. doi: 10.3389/fimmu.2024.1323319. eCollection 2024.
Metabolism plays a complex role in the evolution of cancerous tumors, including inducing a multifaceted effect on the immune system to aid immune escape. Immune escape is, by definition, a collective phenomenon by requiring the presence of two cell types interacting in close proximity: tumor and immune. The microenvironmental context of these interactions is influenced by the dynamic process of blood vessel growth and remodelling, creating heterogeneous patches of well-vascularized tumor or acidic niches.
Here, we present a multiscale mathematical model that captures the phenotypic, vascular, microenvironmental, and spatial heterogeneity which shapes acid-mediated invasion and immune escape over a biologically-realistic time scale. The model explores several immune escape mechanisms such as i) acid inactivation of immune cells, ii) competition for glucose, and iii) inhibitory immune checkpoint receptor expression (PD-L1). We also explore the efficacy of anti-PD-L1 and sodium bicarbonate buffer agents for treatment. To aid in understanding immune escape as a collective cellular phenomenon, we define immune escape in the context of six collective phenotypes (termed "meta-phenotypes"): Self-Acidify, Mooch Acid, PD-L1 Attack, Mooch PD-L1, Proliferate Fast, and Starve Glucose.
Fomenting a stronger immune response leads to initial benefits (additional cytotoxicity), but this advantage is offset by increased cell turnover that leads to accelerated evolution and the emergence of aggressive phenotypes. This creates a bimodal therapy landscape: either the immune system should be maximized for complete cure, or kept in check to avoid rapid evolution of invasive cells. These constraints are dependent on heterogeneity in vascular context, microenvironmental acidification, and the strength of immune response.
This model helps to untangle the key constraints on evolutionary costs and benefits of three key phenotypic axes on tumor invasion and treatment: acid-resistance, glycolysis, and PD-L1 expression. The benefits of concomitant anti-PD-L1 and buffer treatments is a promising treatment strategy to limit the adverse effects of immune escape.
代谢在癌症肿瘤的进化中起着复杂的作用,包括对免疫系统产生多方面的影响,以帮助免疫逃避。免疫逃避是指定义上需要两种细胞类型相互作用的共同现象:肿瘤和免疫。这些相互作用的微环境背景受到血管生长和重塑的动态过程的影响,形成了血管良好的肿瘤异质性斑块或酸性龛位。
在这里,我们提出了一个多尺度数学模型,该模型捕获了表型、血管、微环境和空间异质性,这些因素在生物现实的时间尺度上塑造了酸介导的入侵和免疫逃避。该模型探索了几种免疫逃避机制,例如 i)酸使免疫细胞失活,ii)竞争葡萄糖,和 iii)抑制免疫检查点受体表达(PD-L1)。我们还探索了抗 PD-L1 和碳酸氢钠缓冲剂治疗的疗效。为了帮助理解免疫逃避作为一种集体细胞现象,我们在六个集体表型(称为“元表型”)的背景下定义了免疫逃避:自我酸化、酸吸收、PD-L1 攻击、酸吸收 PD-L1、快速增殖和饥饿葡萄糖。
促进更强的免疫反应会带来最初的好处(额外的细胞毒性),但这种优势被增加的细胞周转率所抵消,这会导致加速进化和侵袭性表型的出现。这就产生了双模态治疗景观:要么免疫系统应该最大化以达到完全治愈,要么保持抑制以避免侵袭性细胞的快速进化。这些约束取决于血管背景、微环境酸化和免疫反应的强度的异质性。
该模型有助于理清三个关键表型轴(酸抗性、糖酵解和 PD-L1 表达)对肿瘤侵袭和治疗的进化成本和收益的关键约束。同时进行抗 PD-L1 和缓冲治疗的好处是限制免疫逃避的不利影响的一种有前途的治疗策略。