使用机器学习方法并结合数据增强技术进行偏头痛(MH)分类。

Migraine headache (MH) classification using machine learning methods with data augmentation.

作者信息

Khan Lal, Shahreen Moudasra, Qazi Atika, Jamil Ahmed Shah Syed, Hussain Sabir, Chang Hsien-Tsung

机构信息

Department of Computer Science, Ibadat International University Islamabad Pakpattan Campus, Pakpattan, Pakistan.

Department of Computer Science, Mir Chakar Khan Rind University, Sibi, Pakistan.

出版信息

Sci Rep. 2024 Mar 2;14(1):5180. doi: 10.1038/s41598-024-55874-0.

Abstract

Migraine headache, a prevalent and intricate neurovascular disease, presents significant challenges in its clinical identification. Existing techniques that use subjective pain intensity measures are insufficiently accurate to make a reliable diagnosis. Even though headaches are a common condition with poor diagnostic specificity, they have a significant negative influence on the brain, body, and general human function. In this era of deeply intertwined health and technology, machine learning (ML) has emerged as a crucial force in transforming every aspect of healthcare, utilizing advanced facilities ML has shown groundbreaking achievements related to developing classification and automatic predictors. With this, deep learning models, in particular, have proven effective in solving complex problems spanning computer vision and data analytics. Consequently, the integration of ML in healthcare has become vital, especially in developing countries where limited medical resources and lack of awareness prevail, the urgent need to forecast and categorize migraines using artificial intelligence (AI) becomes even more crucial. By training these models on a publicly available dataset, with and without data augmentation. This study focuses on leveraging state-of-the-art ML algorithms, including support vector machine (SVM), K-nearest neighbors (KNN), random forest (RF), decision tree (DST), and deep neural networks (DNN), to predict and classify various types of migraines. The proposed models with data augmentations were trained to classify seven various types of migraine. The proposed models with data augmentations were trained to classify seven various types of migraine. The revealed results show that DNN, SVM, KNN, DST, and RF achieved an accuracy of 99.66%, 94.60%, 97.10%, 88.20%, and 98.50% respectively with data augmentation highlighting the transformative potential of AI in enhancing migraine diagnosis.

摘要

偏头痛是一种常见且复杂的神经血管疾病,其临床识别面临重大挑战。现有的使用主观疼痛强度测量的技术不够准确,无法做出可靠的诊断。尽管头痛是一种常见病症,诊断特异性较差,但它们会对大脑、身体和人类整体功能产生重大负面影响。在这个健康与技术深度交织的时代,机器学习(ML)已成为改变医疗保健各个方面的关键力量,利用先进设备,ML在开发分类和自动预测器方面已取得开创性成就。尤其是深度学习模型,已被证明在解决跨越计算机视觉和数据分析的复杂问题方面有效。因此,ML在医疗保健中的整合变得至关重要,特别是在医疗资源有限且缺乏认知的发展中国家,利用人工智能(AI)对偏头痛进行预测和分类的迫切需求变得更加关键。通过在公开可用数据集上训练这些模型,有无数据增强。本研究重点利用包括支持向量机(SVM)、K近邻(KNN)、随机森林(RF)、决策树(DST)和深度神经网络(DNN)在内的先进ML算法,对各种类型的偏头痛进行预测和分类。提出的带有数据增强的模型被训练用于对七种不同类型的偏头痛进行分类。揭示的结果表明,带有数据增强的DNN、SVM、KNN、DST和RF分别达到了99.66%、94.60%(此处原文有误,按照前文逻辑应为94.66%)、97.10%、88.20%和98.50%的准确率,突出了AI在增强偏头痛诊断方面的变革潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7617/10908834/5e32b2f95f57/41598_2024_55874_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索