Department of Renewable Energies and Environmental, University of Tehran, Tehran, Iran; Forest Products Biotech & Bioenergy (FPBB) Lab, Faculty of Forestry, University of British Columbia, BC, Canada.
Department of Renewable Energies and Environmental, University of Tehran, Tehran, Iran.
J Environ Manage. 2024 Mar;355:120539. doi: 10.1016/j.jenvman.2024.120539. Epub 2024 Mar 10.
Rising carbon emissions caused by population growth and industrialization is a significant environmental challenge in various countries. To combat this issue, Renewable Energy (RE) and Carbon Capture and Storage (CCS) technologies should be commercialized to reduce Greenhouse Gas (GHG) emissions and generate carbon-free energy. One such technology is the use of microalgae, which can directly capture CO from the air through photosynthesis and potentially produce biofuels due to their high energy content. However, the carbon capture rate of microalgae varies globally due to numerous parameters and variables affecting microalgae productivity. Additionally, microalgae productivity and carbon capture formulas yield different results worldwide, especially in outdoor industrial-scale cultivation. This research aims to comprehensively review the effective variables and parameters in carbon capture by microalgae based on microalgae productivity and carbon capture formulas. The research also ranked countries based on CO production in four different categories to determine whether the biggest carbon producer countries could exhibit suitable weather conditions for microalgae cultivation. Findings reveal optimal ranges of critical variables in the microalgae growth formula, including temperature, solar radiation intensity, Photon Flux Density (PFD), and sunlight duration. The study also analyzes microalgae cultivation, carbon capture, and oxygen production formula in different systems such as Open Ponds (OP), Tubular Photobioreactors (TPBR), and Flat Plate Photobioreactors (FPPBR), while discussing other influential parameters. In conclusion, emphasizing the adjustment and utilization of optimal values of effective parameters in microalgae cultivation not only holds promise for future carbon capture by microalgae but also pushes human beings toward sustainable development goals.
人口增长和工业化导致的碳排放上升是各国面临的重大环境挑战。为了解决这个问题,应将可再生能源(RE)和碳捕集与封存(CCS)技术商业化,以减少温室气体(GHG)排放并产生无碳能源。一种这样的技术是利用微藻,它可以通过光合作用直接从空气中捕获 CO,并由于其高能量含量而有可能产生生物燃料。然而,由于影响微藻生产力的众多参数和变量,微藻的碳捕获率在全球范围内有所不同。此外,微藻生产力和碳捕获公式在全球范围内产生不同的结果,尤其是在户外工业规模的培养中。本研究旨在根据微藻生产力和碳捕获公式全面审查微藻碳捕获的有效变量和参数。该研究还根据四个不同类别中的 CO 产量对各国进行了排名,以确定最大的碳生产国是否可以表现出适合微藻培养的天气条件。研究结果揭示了微藻生长公式中关键变量的最佳范围,包括温度、太阳辐射强度、光量子通量密度(PFD)和阳光持续时间。该研究还分析了不同系统(如开放式池塘(OP)、管状光生物反应器(TPBR)和板式光生物反应器(FPPBR))中的微藻培养、碳捕获和氧气生产公式,并讨论了其他有影响的参数。总之,强调调整和利用微藻培养中有效参数的最佳值不仅为未来的微藻碳捕获带来了希望,也推动人类朝着可持续发展目标迈进。