Suppr超能文献

关于临界成功指数(CSI)对患病率的依赖性。

On the Dependence of the Critical Success Index (CSI) on Prevalence.

作者信息

Mbizvo Gashirai K, Larner Andrew J

机构信息

Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7BE, UK.

Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool L14 3PE, UK.

出版信息

Diagnostics (Basel). 2024 Mar 5;14(5):545. doi: 10.3390/diagnostics14050545.

Abstract

The critical success index (CSI) is an established metric used in meteorology to verify the accuracy of weather forecasts. It is defined as the ratio of hits to the sum of hits, false alarms, and misses. Translationally, CSI has gained popularity as a unitary outcome measure in various clinical situations where large numbers of true negatives may influence the interpretation of other, more traditional, outcome measures, such as specificity (Spec) and negative predictive value (NPV), or when unified interpretation of positive predictive value (PPV) and sensitivity (Sens) is needed. The derivation of CSI from measures including PPV has prompted questions as to whether and how CSI values may vary with disease prevalence (P), just as PPV estimates are dependent on P, and hence whether CSI values are generalizable between studies with differing prevalences. As no detailed study of the relation of CSI to prevalence has been undertaken hitherto, the dataset of a previously published test accuracy study of a cognitive screening instrument was interrogated to address this question. Three different methods were used to examine the change in CSI across a range of prevalences, using both the Bayes formula and equations directly relating CSI to Sens, PPV, P, and the test threshold (Q). These approaches showed that, as expected, CSI does vary with prevalence, but the dependence differs according to the method of calculation that is adopted. Bayesian rescaling of both Sens and PPV generates a concave curve, suggesting that CSI will be maximal at a particular prevalence, which may vary according to the particular dataset.

摘要

关键成功指数(CSI)是气象学中用于验证天气预报准确性的既定指标。它被定义为命中数与命中数、误报数和漏报数之和的比率。在翻译方面,CSI作为一种单一的结果测量方法在各种临床情况下受到欢迎,在这些情况下,大量的真阴性可能会影响对其他更传统的结果测量方法(如特异性(Spec)和阴性预测值(NPV))的解释,或者当需要对阳性预测值(PPV)和敏感性(Sens)进行统一解释时。从包括PPV在内的测量方法中推导CSI引发了关于CSI值是否以及如何随疾病患病率(P)变化的问题,就像PPV估计值依赖于P一样,因此也引发了关于CSI值在患病率不同的研究之间是否可推广的问题。由于迄今为止尚未对CSI与患病率之间的关系进行详细研究,因此对先前发表的一项认知筛查工具测试准确性研究的数据集进行了分析以解决这个问题。使用贝叶斯公式以及直接将CSI与Sens、PPV、P和测试阈值(Q)相关联的方程,采用三种不同方法来研究一系列患病率下CSI的变化。这些方法表明,正如预期的那样,CSI确实会随患病率变化,但依赖程度因所采用的计算方法而异。对Sens和PPV进行贝叶斯重新缩放会产生一条凹曲线,表明CSI在特定患病率下将达到最大值,该值可能因特定数据集而异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a8d/10931251/f82146b0b518/diagnostics-14-00545-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验