基于多模态MRI影像组学的多形性胶质母细胞瘤患者总生存时间的无创预测

Non-invasive prediction of overall survival time for glioblastoma multiforme patients based on multimodal MRI radiomics.

作者信息

Zhu Jingyu, Ye Jianming, Dong Leshui, Ma Xiaofei, Tang Na, Xu Peng, Jin Wei, Li Ruipeng, Yang Guang, Lai Xiaobo

机构信息

Department of Urology Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University Hangzhou China.

First Affiliated Hospital Gannan Medical University Ganzhou China.

出版信息

Int J Imaging Syst Technol. 2023 Jul;33(4):1261-1274. doi: 10.1002/ima.22869. Epub 2023 Mar 10.

Abstract

Glioblastoma multiforme (GBM) is the most common and deadly primary malignant brain tumor. As GBM tumor is aggressive and shows high biological heterogeneity, the overall survival (OS) time is extremely low even with the most aggressive treatment. If the OS time can be predicted before surgery, developing personalized treatment plans for GBM patients will be beneficial. Magnetic resonance imaging (MRI) is a commonly used diagnostic tool for brain tumors with high-resolution and sound imaging effects. However, in clinical practice, doctors mainly rely on manually segmenting the tumor regions in MRI and predicting the OS time of GBM patients, which is time-consuming, subjective and repetitive, limiting the effectiveness of clinical diagnosis and treatment. Therefore, it is crucial to segment the brain tumor regions in MRI, and an accurate pre-operative prediction of OS time for personalized treatment is highly desired. In this study, we present a multimodal MRI radiomics-based automatic framework for non-invasive prediction of the OS time for GBM patients. A modified 3D-UNet model is built to segment tumor subregions in MRI of GBM patients; then, the radiomic features in the tumor subregions are extracted and combined with the clinical features input into the Support Vector Regression (SVR) model to predict the OS time. In the experiments, the BraTS2020, BraTS2019 and BraTS2018 datasets are used to evaluate our framework. Our model achieves competitive OS time prediction accuracy compared to most typical approaches.

摘要

多形性胶质母细胞瘤(GBM)是最常见且致命的原发性恶性脑肿瘤。由于GBM肿瘤具有侵袭性且表现出高度的生物学异质性,即使采用最积极的治疗方法,其总生存期(OS)也极低。如果能在手术前预测OS时间,为GBM患者制定个性化治疗方案将大有裨益。磁共振成像(MRI)是一种常用的脑肿瘤诊断工具,具有高分辨率和良好的成像效果。然而,在临床实践中,医生主要依靠手动分割MRI中的肿瘤区域并预测GBM患者的OS时间,这既耗时、主观又重复,限制了临床诊断和治疗的有效性。因此,分割MRI中的脑肿瘤区域至关重要,并且非常需要对OS时间进行准确的术前预测以实现个性化治疗。在本研究中,我们提出了一种基于多模态MRI放射组学的自动框架,用于无创预测GBM患者的OS时间。构建了一个改进的3D-Unet模型来分割GBM患者MRI中的肿瘤子区域;然后,提取肿瘤子区域中的放射组学特征并与临床特征相结合,输入支持向量回归(SVR)模型以预测OS时间。在实验中,使用BraTS2020、BraTS2019和BraTS2018数据集来评估我们的框架。与大多数典型方法相比,我们的模型在OS时间预测准确性方面具有竞争力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19dc/10946632/da5a103acfd4/IMA-33-1261-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索