Suppr超能文献

评估机器人辅助根治性前列腺切除术尖部解剖的手术手势。

Surgical gestures to evaluate apical dissection of robot-assisted radical prostatectomy.

机构信息

Catherine and Joseph Aresty Department of Urology, Center for Robotic Simulation and Education, USC Institute of Urology, University of Southern California, Los Angeles, CA, USA.

Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

出版信息

J Robot Surg. 2024 Jun 7;18(1):245. doi: 10.1007/s11701-024-01902-0.

Abstract

Previously, our group established a surgical gesture classification system that deconstructs robotic tissue dissection into basic surgical maneuvers. Here, we evaluate gestures by correlating the metric with surgeon experience and technical skill assessment scores in the apical dissection (AD) of robotic-assisted radical prostatectomy (RARP). Additionally, we explore the association between AD performance and early continence recovery following RARP. 78 AD surgical videos from 2016 to 2018 across two international institutions were included. Surgeons were grouped by median robotic caseload (range 80-5,800 cases): less experienced group (< 475 cases) and more experienced (≥ 475 cases). Videos were decoded with gestures and assessed using Dissection Assessment for Robotic Technique (DART). Statistical findings revealed more experienced surgeons (n = 10) used greater proportions of cold cut (p = 0.008) and smaller proportions of peel/push, spread, and two-hand spread (p < 0.05) than less experienced surgeons (n = 10). Correlations between gestures and technical skills assessments ranged from - 0.397 to 0.316 (p < 0.05). Surgeons utilizing more retraction gestures had lower total DART scores (p < 0.01), suggesting less dissection proficiency. Those who used more gestures and spent more time per gesture had lower efficiency scores (p < 0.01). More coagulation and hook gestures were found in cases of patients with continence recovery compared to those with ongoing incontinence (p < 0.04). Gestures performed during AD vary based on surgeon experience level and patient continence recovery duration. Significant correlations were demonstrated between gestures and dissection technical skills. Gestures can serve as a novel method to objectively evaluate dissection performance and anticipate outcomes.

摘要

先前,我们团队建立了一个外科手势分类系统,将机器人组织解剖分解为基本的手术操作。在这里,我们通过将度量标准与外科医生的经验和技术技能评估评分相关联,来评估机器人辅助根治性前列腺切除术 (RARP) 中的顶端解剖 (AD) 手势。此外,我们还探讨了 AD 表现与 RARP 后早期控尿恢复之间的关系。纳入了来自两个国际机构的 2016 年至 2018 年的 78 个 AD 手术视频。外科医生按中位数机器人手术量分组 (范围 80-5,800 例):经验较少组 (<475 例) 和经验较多组 (≥475 例)。使用手势对视频进行解码,并使用机器人技术解剖评估 (DART) 进行评估。统计结果显示,经验丰富的外科医生 (n=10) 使用更多冷切 (p=0.008) 和更少的剥离/推挤、展开和双手展开 (p<0.05),而经验较少的外科医生 (n=10) 使用的则更少。手势与技术技能评估之间的相关性范围从-0.397 到 0.316(p<0.05)。使用更多回缩手势的外科医生总 DART 评分较低 (p<0.01),这表明他们的解剖熟练程度较低。使用更多手势且每个手势花费更多时间的外科医生效率评分较低 (p<0.01)。与仍有尿失禁的患者相比,控尿恢复患者的手术中更常使用凝血和钩状手势 (p<0.04)。AD 期间执行的手势根据外科医生的经验水平和患者控尿恢复时间而有所不同。手势与解剖技术技能之间存在显著相关性。手势可以作为一种客观评估解剖表现并预测结果的新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc5e/11161532/87458743e357/11701_2024_1902_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验