计算单细胞方法预测癌症风险。
Computational single-cell methods for predicting cancer risk.
机构信息
CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
出版信息
Biochem Soc Trans. 2024 Jun 26;52(3):1503-1514. doi: 10.1042/BST20231488.
Despite recent biotechnological breakthroughs, cancer risk prediction remains a formidable computational and experimental challenge. Addressing it is critical in order to improve prevention, early detection and survival rates. Here, I briefly summarize some key emerging theoretical and computational challenges as well as recent computational advances that promise to help realize the goals of cancer-risk prediction. The focus is on computational strategies based on single-cell data, in particular on bottom-up network modeling approaches that aim to estimate cancer stemness and dedifferentiation at single-cell resolution from a systems-biological perspective. I will describe two promising methods, a tissue and cell-lineage independent one based on the concept of diffusion network entropy, and a tissue and cell-lineage specific one that uses transcription factor regulons. Application of these tools to single-cell and single-nucleus RNA-seq data from stages prior to invasive cancer reveal that they can successfully delineate the heterogeneous inter-cellular cancer-risk landscape, identifying those cells that are more likely to turn cancerous. Bottom-up systems biological modeling of single-cell omic data is a novel computational analysis paradigm that promises to facilitate the development of preventive, early detection and cancer-risk prediction strategies.
尽管最近在生物技术方面取得了突破,但癌症风险预测仍然是一个艰巨的计算和实验挑战。为了提高预防、早期检测和生存率,解决这个问题至关重要。在这里,我简要总结了一些关键的新兴理论和计算挑战,以及最近有望帮助实现癌症风险预测目标的计算进展。重点是基于单细胞数据的计算策略,特别是从系统生物学的角度出发,旨在估计癌症干性和去分化的自下而上的网络建模方法。我将描述两种有前途的方法,一种是基于扩散网络熵概念的与组织和细胞谱系无关的方法,另一种是使用转录因子调控子的与组织和细胞谱系特异的方法。将这些工具应用于侵袭性癌症前阶段的单细胞和单核 RNA-seq 数据表明,它们可以成功描绘出异质的细胞间癌症风险景观,识别出更有可能癌变的细胞。基于单细胞组学数据的自下而上的系统生物学建模是一种新的计算分析范例,有望促进预防性、早期检测和癌症风险预测策略的发展。