基于高效荧光聚苯乙烯微球报告系统的 CRISPR/Cas12a 适体传感器检测四环素。
Detection of Tetracycline with a CRISPR/Cas12a Aptasensor Using a Highly Efficient Fluorescent Polystyrene Microsphere Reporter System.
机构信息
Biosensors and Nanobiotechnology Laboratory, Chemical Science Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam.
School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales 2052, Australia.
出版信息
ACS Synth Biol. 2024 Jul 19;13(7):2166-2176. doi: 10.1021/acssynbio.4c00200. Epub 2024 Jun 12.
CRISPR-based diagnostics use the CRISPR-Cas system -cleavage activity to identify specific target sequences. When activated, this activity cleaves surrounding reporter molecules, producing a detectable signal. This technique has great specificity, sensitivity, and rapid detection, making it an important molecular diagnostic tool for medical and infectious disease applications. Despite its potential, the present CRISPR/Cas system has challenges with its single-stranded DNA reporters, characterized by low stability and limited sensitivity, restricting effective application in complex biological settings. In this work, we investigate the -cleavage activity of CRISPR/Cas12a on substrates utilizing fluorescent polystyrene microspheres to detect tetracycline. This innovative discovery led to the development of microsphere probes addressing the stability and sensitivity issues associated with CRISPR/Cas biosensing. By attaching the ssDNA reporter to polystyrene microspheres, we discovered that the Cas12a system exhibits robust and sensitive -cleavage activity. Further work revealed that the -cleavage activity of Cas12a on the microsphere surface is significantly dependent on the concentration of the ssDNA reporters. Building on these intriguing discoveries, we developed microsphere-based fluorescent probes for CRISPR/Cas aptasensors, which showed stability and sensitivity in tetracycline biosensing. We demonstrated a highly sensitive detection of tetracycline with a detection limit of 0.1 μM. Finally, the practical use of a microsphere-based CRISPR/Cas aptasensor in spiked food samples was proven successful. These findings highlighted the remarkable potential of microsphere-based CRISPR/Cas aptasensors for biological research and medical diagnosis.
基于 CRISPR 的诊断使用 CRISPR-Cas 系统的切割活性来识别特定的靶序列。当被激活时,这种活性会切割周围的报告分子,产生可检测的信号。该技术具有很高的特异性、灵敏度和快速检测能力,使其成为医学和传染病应用的重要分子诊断工具。尽管具有潜力,但目前的 CRISPR/Cas 系统在其单链 DNA 报告分子方面存在挑战,其特点是稳定性低和灵敏度有限,限制了其在复杂生物环境中的有效应用。在这项工作中,我们研究了 CRISPR/Cas12a 对利用荧光聚苯乙烯微球检测四环素的底物的切割活性。这一创新发现导致了微球探针的开发,解决了与 CRISPR/Cas 生物传感相关的稳定性和灵敏度问题。通过将 ssDNA 报告分子附着到聚苯乙烯微球上,我们发现 Cas12a 系统表现出强大而灵敏的切割活性。进一步的工作表明,Cas12a 在微球表面的切割活性显著依赖于 ssDNA 报告分子的浓度。基于这些有趣的发现,我们开发了基于微球的 CRISPR/Cas 适体传感器的荧光探针,在四环素生物传感中表现出稳定性和灵敏度。我们证明了对四环素的高灵敏度检测,检测限为 0.1 μM。最后,成功证明了基于微球的 CRISPR/Cas 适体传感器在加标食品样品中的实际应用。这些发现突出了基于微球的 CRISPR/Cas 适体传感器在生物研究和医学诊断方面的巨大潜力。