通过光声成像对气管层中纳米佐剂转运进行体内定量表征。

In vivo quantitative characterization of nano adjuvant transport in the tracheal layer by photoacoustic imaging.

作者信息

Liang Chaohao, Meng Fan, Zhang Yiqing, Chen Yuxiang, Luo Li, Li Hongyan, Tu Xinbo, He Fengbing, Luo Zhijia, Wang Qian, Zhang Jian

机构信息

School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.

State Key Laboratory of Respiratory Diseases, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, Guangdong, China.

出版信息

Biomed Opt Express. 2024 May 29;15(6):3962-3974. doi: 10.1364/BOE.527912. eCollection 2024 Jun 1.

Abstract

Adjuvants are indispensable ingredients in vaccine formulations. Evaluating the in vivo transport processes of adjuvants, particularly for inhalation formulations, presents substantial challenges. In this study, a nanosized adjuvant aluminum hydroxide (AlOOH) was synthesized and labeled with indocyanine green (ICG) and bovine serum albumin (BSA) to achieve strong optical absorption ability and high biocompatibility. The adjuvant nanomaterials (BSA@ICG@AlOOH, BIA) were delivered as an aerosol into the airways of mice, its distribution was monitored using photoacoustic imaging (PAI) in vivo. PAI results illustrated the gradual cross-layer transmission process of BIA in the tracheal layer, traversing approximately 250 µm from the inner layer of the trachea to the outer layer. The results were consistent with pathology. While the intensity of the BIA reduced by approximately 46.8% throughout the transport process. The ability of PAI for quantitatively characterized the dynamic transport process of adjuvant within the tracheal layer may be widely used in new vaccine development.

摘要

佐剂是疫苗制剂中不可或缺的成分。评估佐剂在体内的转运过程,尤其是吸入制剂的转运过程,面临着重大挑战。在本研究中,合成了纳米级佐剂氢氧化铝(AlOOH),并用吲哚菁绿(ICG)和牛血清白蛋白(BSA)进行标记,以实现强光学吸收能力和高生物相容性。将佐剂纳米材料(BSA@ICG@AlOOH,BIA)制成气溶胶输送到小鼠气道中,利用光声成像(PAI)在体内监测其分布。PAI结果表明BIA在气管层中逐渐进行跨层传输过程,从气管内层到外层穿越了约250 µm。结果与病理学一致。而在整个转运过程中BIA的强度降低了约46.8%。PAI定量表征气管层内佐剂动态转运过程的能力可能会广泛应用于新型疫苗研发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a72/11166438/9e0488c12cb3/boe-15-6-3962-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索