IEEE Trans Med Imaging. 2024 Oct;43(10):3608-3620. doi: 10.1109/TMI.2024.3414931. Epub 2024 Oct 28.
Diffusion models have emerged as a popular family of deep generative models (DGMs). In the literature, it has been claimed that one class of diffusion models-denoising diffusion probabilistic models (DDPMs)-demonstrate superior image synthesis performance as compared to generative adversarial networks (GANs). To date, these claims have been evaluated using either ensemble-based methods designed for natural images, or conventional measures of image quality such as structural similarity. However, there remains an important need to understand the extent to which DDPMs can reliably learn medical imaging domain-relevant information, which is referred to as 'spatial context' in this work. To address this, a systematic assessment of the ability of DDPMs to learn spatial context relevant to medical imaging applications is reported for the first time. A key aspect of the studies is the use of stochastic context models (SCMs) to produce training data. In this way, the ability of the DDPMs to reliably reproduce spatial context can be quantitatively assessed by use of post-hoc image analyses. Error-rates in DDPM-generated ensembles are reported, and compared to those corresponding to other modern DGMs. The studies reveal new and important insights regarding the capacity of DDPMs to learn spatial context. Notably, the results demonstrate that DDPMs hold significant capacity for generating contextually correct images that are 'interpolated' between training samples, which may benefit data-augmentation tasks in ways that GANs cannot.
扩散模型已经成为一种流行的深度生成模型(DGM)家族。在文献中,有人声称,一类扩散模型——去噪扩散概率模型(DDPM)——与生成对抗网络(GAN)相比,具有更优越的图像合成性能。迄今为止,这些说法要么是使用专为自然图像设计的基于集合的方法进行评估,要么是使用图像质量的传统衡量标准,如结构相似性。然而,人们仍然需要了解 DDPM 能够在多大程度上可靠地学习医学成像领域相关的信息,在这项工作中,这被称为“空间上下文”。为了解决这个问题,首次对 DDPM 学习与医学成像应用相关的空间上下文的能力进行了系统评估。研究的一个关键方面是使用随机上下文模型(SCM)来生成训练数据。通过这种方式,可以通过事后的图像分析来定量评估 DDPM 可靠地再现空间上下文的能力。报告了 DDPM 生成的集合中的错误率,并与其他现代 DGM 的错误率进行了比较。这些研究揭示了关于 DDPM 学习空间上下文的能力的新的和重要的见解。值得注意的是,结果表明,DDPM 具有生成上下文正确的图像的重要能力,这些图像是在训练样本之间“插值”生成的,这可能以 GAN 无法实现的方式受益于数据增强任务。