优化一种合适的方案以分离肝癌组织来源的细胞外囊泡并分析其小 RNA 图谱。

Optimizing of a suitable protocol for isolating tissue-derived extracellular vesicles and profiling small RNA patterns in hepatocellular carcinoma.

机构信息

Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.

Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

出版信息

Liver Int. 2024 Oct;44(10):2672-2686. doi: 10.1111/liv.16011. Epub 2024 Jul 22.

Abstract

BACKGROUND

Extracellular vesicles (EVs) facilitate cell-cell interactions in the tumour microenvironment. However, standard and efficient methods to isolate tumour tissue-derived EVs are lacking, and their biological functions remain elusive.

METHODS

To determine the optimal method for isolating tissue-derived EVs, we compared the characterization and concentration of EVs obtained by three previously reported methods using transmission electron microscopy, nanoparticle tracking analysis, and nanoflow analysis (Nanoflow). Additionally, the differential content of small RNAs, especially tsRNAs, between hepatocellular carcinoma (HCC) and adjacent normal liver tissues (ANLTs)-derived EVs was identified using Arraystar small RNA microarray. The targets of miRNAs and tsRNAs were predicted, and downstream functional analysis was conducted using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, non-negative matrix factorization and survival prediction analysis.

RESULTS

A differential centrifugation-based protocol without cell cultivation (NC protocol) yielded higher EV particles and higher levels of CD9 and CD63 EVs compared with other isolation protocols. Interestingly, the NC protocol was also effective for isolating frozen tissue-derived EVs that were indistinguishable from fresh tissue. HCC tissues showed significantly higher EV numbers compared with ANLTs. Furthermore, we identified different types of small RNAs in HCC tissue-derived EVs, forming a unique multidimensional intercellular communication landscape that can differentiate between HCC and ANLTs. ROC analysis further showed that the combination of the top 10 upregulated small RNAs achieved better diagnostic performance (AUC = .950 [.895-1.000]). Importantly, most tsRNAs in HCC tissue-derived EVs were downregulated and mitochondria-derived, mainly involving in lipid-related metabolic reprogramming.

CONCLUSION

The NC protocol was optimal for isolating EVs from HCC, especially from frozen tissues. Our study emphasized the different roles of small-RNA in regulating the HCC ecosystem, providing insights into HCC progression and potential therapeutic targets.

摘要

背景

细胞外囊泡 (EVs) 在肿瘤微环境中促进细胞间的相互作用。然而,缺乏标准且有效的方法来分离肿瘤组织来源的 EVs,并且它们的生物学功能仍然难以捉摸。

方法

为了确定分离组织来源的 EVs 的最佳方法,我们比较了三种先前报道的方法在透射电子显微镜、纳米颗粒跟踪分析和纳米流分析 (Nanoflow) 中获得的 EVs 的特征和浓度。此外,使用 Arraystar 小 RNA 微阵列鉴定了肝癌 (HCC) 和相邻正常肝组织 (ANLT) 衍生的 EVs 之间小 RNA,特别是 tsRNA 的差异含量。预测了 miRNAs 和 tsRNAs 的靶标,并使用基因本体论、京都基因与基因组百科全书、非负矩阵分解和生存预测分析进行了下游功能分析。

结果

一种不进行细胞培养的基于差速离心的方案(NC 方案)与其他分离方案相比,产生了更高的 EV 颗粒和更高水平的 CD9 和 CD63 EVs。有趣的是,NC 方案对于分离冷冻组织衍生的 EV 也很有效,其与新鲜组织无明显差异。与 ANLT 相比,HCC 组织显示出明显更高的 EV 数量。此外,我们在 HCC 组织衍生的 EVs 中鉴定了不同类型的小 RNA,形成了一种独特的多维细胞间通讯景观,可以区分 HCC 和 ANLT。ROC 分析进一步表明,前 10 个上调小 RNA 的组合具有更好的诊断性能 (AUC = .950 [.895-1.000])。重要的是,大多数 HCC 组织衍生的 EVs 中的 tsRNA 下调且来源于线粒体,主要涉及脂质相关的代谢重编程。

结论

NC 方案是从 HCC 中分离 EVs 的最佳方案,尤其是从冷冻组织中分离。我们的研究强调了小 RNA 在调节 HCC 生态系统中的不同作用,为 HCC 进展和潜在治疗靶点提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索