Suppr超能文献

DeepComBat:一种基于统计学的、超参数稳健的、深度学习方法,用于神经影像学数据的调和。

DeepComBat: A statistically motivated, hyperparameter-robust, deep learning approach to harmonization of neuroimaging data.

机构信息

Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Center for Neuroengineering and Therapeutics, Department of Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

Hum Brain Mapp. 2024 Aug 1;45(11):e26708. doi: 10.1002/hbm.26708.

Abstract

Neuroimaging data acquired using multiple scanners or protocols are increasingly available. However, such data exhibit technical artifacts across batches which introduce confounding and decrease reproducibility. This is especially true when multi-batch data are analyzed using complex downstream models which are more likely to pick up on and implicitly incorporate batch-related information. Previously proposed image harmonization methods have sought to remove these batch effects; however, batch effects remain detectable in the data after applying these methods. We present DeepComBat, a deep learning harmonization method based on a conditional variational autoencoder and the ComBat method. DeepComBat combines the strengths of statistical and deep learning methods in order to account for the multivariate relationships between features while simultaneously relaxing strong assumptions made by previous deep learning harmonization methods. As a result, DeepComBat can perform multivariate harmonization while preserving data structure and avoiding the introduction of synthetic artifacts. We apply this method to cortical thickness measurements from a cognitive-aging cohort and show DeepComBat qualitatively and quantitatively outperforms existing methods in removing batch effects while preserving biological heterogeneity. Additionally, DeepComBat provides a new perspective for statistically motivated deep learning harmonization methods.

摘要

越来越多的神经影像学数据是使用多种扫描仪或协议获取的。然而,此类数据在批次之间存在技术伪影,这会引入混杂因素并降低可重复性。当使用更有可能捕捉到并隐式包含批次相关信息的复杂下游模型分析多批次数据时,情况尤其如此。以前提出的图像协调方法旨在消除这些批次效应;然而,在应用这些方法后,数据中仍然可以检测到批次效应。我们提出了 DeepComBat,这是一种基于条件变分自动编码器和 ComBat 方法的深度学习协调方法。DeepComBat 将统计和深度学习方法的优势结合在一起,以解释特征之间的多元关系,同时放宽以前的深度学习协调方法所做的严格假设。结果,DeepComBat 可以在保持数据结构和避免引入合成伪影的同时执行多元协调。我们将此方法应用于认知老化队列的皮质厚度测量值,并表明 DeepComBat 在消除批次效应的同时,在保留生物学异质性方面的定性和定量表现均优于现有方法。此外,DeepComBat 为基于统计学的深度学习协调方法提供了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7da2/11273293/799e4216a1ce/HBM-45-e26708-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验