Potential of GSPT1 as a novel target for glioblastoma therapy.

作者信息

Sasayama Takashi, Hamada Takeshi, Tanaka Kazuhiro, Nagashima Hiroaki, Yamanishi Shunsuke, Ueyama Takehiko

机构信息

Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan.

Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan.

出版信息

Cell Death Dis. 2024 Aug 8;15(8):572. doi: 10.1038/s41419-024-06967-1.

Abstract

Glioblastoma is the most common malignant brain tumor in adults, the survival rate of which has not significantly improved over the past three decades. Therefore, there is an urgent need to develop novel treatment modalities. We previously reported that G1 to S phase transition 1 (GSPT1) depletion induces delayed cell cycle in primary astrocytes. Herein, we examined the potential of GSPT1 as a novel target for glioblastoma therapy. CC-885, a cereblon modulator that degrades GSPT1 by bridging GSPT1 to the CRL4 E3 ubiquitin ligase complex, was administered to nude mice with transplanted brain tumors of U87 glioblastoma cells. The survival period was significantly longer in CC-885 treated mice than in control mice. Furthermore, we generated GSPT1-knockout (KO) U87 cells and GSPT1-KO U87 cells with stable overexpression of FLAG-tagged GSPT1 (Rescued GSPT1-KO). Mice with transplanted GSPT1-KO U87 cells and Rescued GSPT1-KO U87 cells showed significantly longer and similar survival periods, respectively, as those with wild-type (WT) U87 cells. GSPT1-KO U87 cells showed enhanced apoptosis, detected by cleaved PARP1, compared to WT U87 cells. Brain tumors with transplantation of GSPT1-KO U87 cells also showed enhanced apoptosis compared to those with transplantation of WT and Rescued GSPT1-KO U87 cells. GSPT1 expression was confirmed in patients with glioblastoma. However, the clinical study using 87 glioblastoma samples showed that GSPT1 mRNA levels were not associated with overall survival. Taken together, we propose that GSPT1 is an essential protein for glioblastoma growth, but not its malignant characteristics, and that GSPT1 is a potential target for developing glioblastoma therapeutics.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1298/11310507/a06d7cf781ef/41419_2024_6967_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索