Suppr超能文献

转录抑制和增强子失活使细胞周期基因在有丝分裂后的组织中沉默。

Transcriptional repression and enhancer decommissioning silence cell cycle genes in postmitotic tissues.

机构信息

Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N. University Ave., Ann Arbor, MI 48109, USA.

出版信息

G3 (Bethesda). 2024 Oct 7;14(10). doi: 10.1093/g3journal/jkae203.

Abstract

The mechanisms that maintain a non-cycling status in postmitotic tissues are not well understood. Many cell cycle genes have promoters and enhancers that remain accessible even when cells are terminally differentiated and in a non-cycling state, suggesting their repression must be maintained long term. In contrast, enhancer decommissioning has been observed for rate-limiting cell cycle genes in the Drosophila wing, a tissue where the cells die soon after eclosion, but it has been unclear if this also occurs in other contexts of terminal differentiation. In this study, we show that enhancer decommissioning also occurs at specific, rate-limiting cell cycle genes in the long-lived tissues of the Drosophila eye and brain, and we propose this loss of chromatin accessibility may help maintain a robust postmitotic state. We examined the decommissioned enhancers at specific rate-limiting cell cycle genes and showed that they encode for dynamic temporal and spatial expression patterns that include shared, as well as tissue-specific elements, resulting in broad gene expression with developmentally controlled temporal regulation. We extend our analysis to cell cycle gene expression and chromatin accessibility in the mammalian retina using a published dataset and find that the principles of cell cycle gene regulation identified in terminally differentiating Drosophila tissues are conserved in the differentiating mammalian retina. We propose a robust, non-cycling status is maintained in long-lived postmitotic tissues through a combination of stable repression at most cell cycle genes, alongside enhancer decommissioning at specific rate-limiting cell cycle genes.

摘要

细胞分裂后组织中维持非细胞周期状态的机制尚不清楚。许多细胞周期基因的启动子和增强子在细胞终末分化并处于非细胞周期状态时仍然可及,这表明它们的抑制必须长期维持。相比之下,在细胞迅速死亡的果蝇翅膀组织中,限速细胞周期基因的增强子失活已经被观察到,但在其他终末分化的情况下是否也发生这种情况尚不清楚。在这项研究中,我们表明限速细胞周期基因的增强子失活也发生在果蝇眼和脑中寿命较长的组织中,我们提出这种染色质可及性的丧失可能有助于维持稳健的有丝后状态。我们检查了特定限速细胞周期基因的失活增强子,并表明它们编码具有动态时空表达模式的基因,包括共享和组织特异性元件,从而导致广泛的基因表达,并具有发育调控的时空调节。我们使用已发表的数据集将我们的分析扩展到哺乳动物视网膜中的细胞周期基因表达和染色质可及性,发现在终末分化的果蝇组织中鉴定的细胞周期基因调控原理在分化的哺乳动物视网膜中是保守的。我们提出,在寿命较长的有丝后组织中,通过大多数细胞周期基因的稳定抑制,以及特定限速细胞周期基因的增强子失活,来维持稳健的非细胞周期状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb34/11457063/17efa64ef6e4/jkae203f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验